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Abstract 

Combining water monitoring station-level administrative data and transaction-

level housing price data from Shanghai, China, we investigate the impact of China’s 

2015 water pollution reduction policy on water pollution and housing prices. We first 

find that the policy significantly improved water quality of treated monitoring stations 

by 0.352 standard deviations. Furthermore, we find that the policy led to a 3.5% 

increase in the housing prices of apartments located within a 500-meter distance to the 

nearest treated river, but the effect disappeared for apartments located more than 500 

meters away from the nearest river. Finally, we find evidence that the water reduction 

policy might have exacerbated the wealth inequality in Shanghai. 
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1. Introduction 

Water quality has essential impacts on individuals’ health and welfare (Galiani, 

Gertler, and Schargrodsky, 2005; Zhang, 2012; Zhang and Xu, 2016; Lai, 2017; Alsan 

and Goldin, 2019; Aggeborn and Öhman, 2021). Therefore, governments worldwide 

have made great efforts to improve water quality. For example, since the Clean Water 

Act in 1972, the U.S. has invested more than $1 trillion to abate water pollution (Keiser 

and Shapiro, 2019a). The Chinese government has also taken several measures to 

address the deterioration of water quality accompanying its fast economic growth in 

recent decades. As early as 2006, China’s central government set water pollution 

reduction targets for local governments (Shi and Xu, 2018). In April 2015, the Chinese 

central government issued the Action Plan on Water Pollution Prevention and Control, 

which is designed to improve surface water quality.1 

However, compared with mature evidence on the impacts of policies to reduce air 

pollution, there is less research on whether governments’ efforts to reduce water 

pollution have achieved their goals and what the potential consequences are due to 

reduced water pollution (Greenstone et al., 2021). In this paper, we investigate the 

impact of China’s 2015 plan to reduce water pollution and its consequences in the 

housing market. We focus on Shanghai, one of the two largest cities (the other one is 

Beijing) in China. There are several reasons for us to focus on Shanghai. First, Shanghai 

is the most advanced city in China, comparable to other major cities in developed 

countries. For example, the gross domestic product (GDP) in Shanghai was 

approximately 403 billion dollars in 2015, similar to that of the greater Boston metro 

area (approximately 379 billion dollars). The results based on Shanghai are 

generalizable. Second, focusing on Shanghai can mitigate the risk of estimation bias 

due to unobservable socioeconomic factors that might affect policy implementation in 

different provinces/cities and outcome variables at the same time. Third, several rivers 

flow through the Shanghai metro area, which provides a good context for studying this 

question. Fourth, we can obtain access to detailed pollution data from water quality 

 
1 In the remaining text, we use “surface water” and “water” interchangeably. 
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monitoring stations and transaction-level housing price (defined as price per square 

meter in our paper) data from Shanghai, which facilitates our analysis. 

Based on the plan issued by the Chinese central government, Shanghai released its 

own action plan on water pollution prevention and control in December 2015, named 

the Shanghai Action Plan on Water Pollution Prevention and Control (the Shanghai 

plan or the plan hereafter). The target of the plan was to eradicate type VI water in river 

sections by 2020.2 For our paper, we obtained access to water quality information on 

river sections where monitoring stations are located in Shanghai. The plan generates 

cross-monitoring station variation in terms of policy influence. That is, the monitoring 

stations where the water was type VI before the plan are affected more by the plan than 

those where the water had type I to V quality. Combining the pre- and post-policy 

changes and the cross-monitoring station variation in the policy influence, we can 

exploit a difference-in-differences (DID) strategy for identification. 

We first find that the plan significantly improved water quality. Compared with 

untreated monitoring stations, the plan reduced the water pollution of treated 

monitoring stations by 0.352 standard deviations.  

We then investigate the consequences of reduced water pollution by estimating the 

responses of housing prices to the plan, following the literature exploiting the hedonic 

approach (e.g., Muehlenbachs, Spiller, and Timmins, 2015; Tang, Heintzelman, and 

Holsen, 2018; Keiser and Shapiro, 2019a; Baldauf, Garlappi, and Yannelis, 2020; Mei 

et al., 2021; Cassidy, Meeks, and Moore, 2023).3 We find that the plan had a significant 

effect on housing prices for apartments located within 500 meters of the nearest treated 

river, but the plan did not have any significant effects for those located further away. 

Based on this finding, we restrict our analysis to apartments located within 500 meters 

of the nearest river. We find that the plan led to a 3.5% increase in housing prices, which 

is equivalent to 5.5% of the average increase (63.5%) of the second-hand housing prices 

 
2 Type I to type V water can be used for various purposes, and a larger number indicates worse 
water quality, while type VI water refers to water that has the worst quality and loses all functions. 
Further details regarding China’s water quality classification can be found in Section 2.1. 
3 Due to the lack of individual health outcomes, we were not able to investigate the impact of 
reduced water pollution on health. 
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in Shanghai during our sample period. 

We conduct several robustness tests to justify our findings. We find that the parallel 

trend assumption holds and that our results are not driven by confounding events or the 

changes in the frequency of monitoring station reports. We also conduct permutation 

tests to show that our results are not driven by random factors. 

In addition, we analyze the channels through which the plan increased housing 

prices. Our findings reveal that the plan’s implementation significantly increased the 

number of visits by potential buyers to the apartments near treated rivers, indicating a 

surge in demand for these properties. Moreover, the availability of these apartments 

diminished, particularly those with river-facing windows. Consequently, this imbalance 

in supply and demand led to an increase in housing prices. 

Finally, we examine the impacts of the plan on inequality. We find two pieces of 

evidence. First, apartment complexes with higher housing prices before the policy 

experienced a more substantial price increase after the policy.4 Second, subdistricts 

with favorable economic conditions and proximity to the city centers before the policy 

saw a larger housing price increase. These findings suggest that the plan may have 

exacerbated wealth inequality in Shanghai. 

Our paper makes the following contributions. First, although governments of 

countries worldwide have made great efforts to reduce water pollution, there is no 

consensus on whether these policies have achieved their goals. For example, Keiser and 

Shapiro (2019a) used a comprehensive dataset to study the impact of the 1972 U.S. 

Clean Water Act and found a substantial drop in water pollution concentrations after 

the implementation of this act. Keiser and Shapiro (2019b) summarized the existing 

research and concluded that water pollution has decreased in the U.S. since the 

implementation of different pollution reduction policies. However, Greenstone and 

Hanna (2014) found that water regulations had no measurable benefits in India, which 

 
4 Apartment complexes (known as xiaoqv in Chinese) refer to enclosed areas comprising multiple 
apartment buildings, often surrounded by walls or fences. Each apartment complex resembles a self-
contained neighborhood, featuring amenities like parks, playgrounds, and sometimes shopping 
centers or other communal facilities. With potentially hundreds of individual apartments within each 
complex, these areas are densely populated. Apartment complexes are widespread in urban areas 
across China. In the remaining text, we use “apartment complex” and “complex” interchangeably. 
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was attributed to the weak institutes in developing countries. Moreover, the literature 

on the effect of water pollution control policies before 2010 in China found 

unsatisfactory policy outcomes (Kahn, Li, and Zhao, 2015; Cai, Chen, and Gong, 2016; 

Chen et al., 2018). This can be attributed to the tendency of local governments to reduce 

pollution levels in areas that receive substantial scrutiny while simultaneously allowing 

pollution levels to rise in areas that are less closely monitored. In contrast, we find that 

China’s 2015 water pollution reduction action plan effectively reduced water pollution 

in Shanghai. Although China is also a developing country overall, Shanghai is an 

advanced city more similar to cities in developed countries. In addition to adding more 

evidence about the effectiveness of pollution reduction policies, our results imply that 

within developing countries, heterogeneity in policy effects exists. 

Second, we add to the literature using the hedonic approach to estimate the impact 

of environmental policies intended to improve water quality on housing prices. For 

example, Leggett and Bockstael (2000) used the hedonic technique to estimate the 

effect of water quality improvement along the Chesapeake Bay on property values, and 

they found a significantly positive effect. Keiser and Shapiro (2019a) estimated the 

effects of grants from the 1972 U.S. Clean Water Act on housing values and found that 

the benefits were smaller than the grants’ costs. Christensen, Keiser, and Lade (2023) 

found that switching from the Detroit water system to the Flint River exposed residents 

to dangerous levels of lead, resulting in a $30 million decrease in housing value in Flint, 

Michigan. We estimate the effect of water quality on housing prices in Shanghai, which 

provides more evidence from a less developed country. 

Third, although many studies have investigated the impact of environmental 

policies on outcome variables such as health, worker productivity, and migration, few 

studies have focused on the inequality implications of these policies, and the findings 

are mixed. For example, Constant (2019) constructed a theoretical model to show that 

a stricter environmental policy can allow the economy to escape from the inequality 

trap if the initial inequality in human capital is not too large. Jha, Mathews, and Muller 

(2019) studied the impact of the Clean Air Act in the U.S. on wage inequality and found 

that the benefits from this policy were disproportionately distributed to the rich. They 
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 6 

concluded that stricter environmental regulation can exacerbate income inequality. Liu 

et al. (2023) found that region-specific environmental policies in China can enlarge 

wage inequality between skilled and unskilled workers. In contrast, Cassidy, Hill, and 

Ma (2022) found that the Resource Conservation and Recovery Act mainly affected the 

lower deciles of housing prices, which narrowed inequality. In our paper, our findings 

suggest that the plan may exacerbate wealth inequality in Shanghai. Our results not 

only provide complementary evidence for the current research but also have important 

policy implications. China has taken many measures to address the challenge of 

deteriorating environments and has made considerable achievements in pollution 

control (Greenstone et al., 2021). However, our results suggest that pollution reduction 

policies might worsen inequality. Given that China is among the countries experiencing 

increasing inequality (Xie and Zhou, 2014; Piketty, Yang, and Zucman, 2019), our 

results imply that policy-makers need to comprehensively evaluate current pollution 

reduction policies and take unintended impacts into account in future policy-making. 

The remainder of this paper is divided into the following sections. Section 2 

provides background knowledge. Section 3 introduces the data used in our paper. 

Section 4 investigates the impact of the 2015 Shanghai plan on water pollution. Then, 

Section 5 studies the impact of this plan on housing prices and its implications for 

inequality. Finally, Section 6 concludes the paper. 

 

2. Background 

2.1. Water Pollution in China 

In China, the quality of water is regulated by the Environmental Quality Standards 

for Surface Water (GB 3838-2002), which was issued by the State Environmental 

Protection Administration (predecessor of the Ministry of Ecology and Environment) 

and the General Administration of Quality Supervision, Inspection and Quarantine on 

April 28, 2002.5 The document lays out five levels of standards: type I to type V (from 

 
5 A Chinese version of this file can be accessed at 
https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4760477

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 7 

the highest to lowest quality).6 The standards are determined by water temperature, pH 

value, and 22 pollutants.7 Water that satisfies these five standards is usually called type 

I to type V water. In addition, water with a quality lower than type V has lost all 

functions and cannot be used for any purpose. For simplicity, this type of water is called 

type VI water. 

Since the 1980s, China has experienced unprecedented economic growth. 

However, during the same period, the natural environment deteriorated dramatically. 

According to the China Environmental Status Bulletin issued by the Ministry of 

Ecology and Environment in 2002, when the current water quality standards were first 

implemented, among all 741 monitoring stations, 29.1% met types I to III standards, 

30% met types IV and V standards, and the remaining 40.9% had quality lower than 

type V.8  Such severe water pollution leads to a large loss in social welfare. It is 

estimated that 190 million people in China fall ill and 60,000 people die from diseases 

caused by water pollution every year (Tao and Xin, 2014). 

The Chinese government has made great efforts to combat water pollution. The 

State Council issued the Action Plan on Water Pollution Prevention and Control in 

April 2015, known as the most stringent and comprehensive water pollution control act 

in China to date (Karplus, Zhang, and Zhao, 2021). The target of the 2015 plan for areas 

in Yangtze River Delta (where our sample area Shanghai is located) and Pearl River 

Delta was to eradicate type VI water. 9  Under the guidance of the plan, local 

governments released their water pollution reduction plans. 

 
6 The type I standard is applied to source water or water in national nature reserves. The type II 
standard is applied to surface water sources in primary protection zones, habitats for rare aquatic 
organisms, fish and shrimp spawning grounds, and feeding grounds for young fish. The type III 
standard is applied to surface water sources in secondary protection zones, fish and shrimp wintering 
grounds, fish migratory passages, and aquaculture areas. The type IV standard is applied to 
industrial water and recreational water that is not directly in contact with the human body. The type 
V standard is applied to agricultural water and landscape water areas. 
7  They include dissolved oxygen, permanganate index, chemical oxygen demand, five-day 
biochemical oxygen demand, ammonia nitrogen, total phosphorus, total nitrogen, copper, zinc, 
fluoride, selenium, arsenic, mercury, cadmium, chromium, lead, cyanide, volatile phenol, petroleum, 
anionic surfactant, sulfide, and fecal coliform colonies. 
8 See page 5 in the bulletin (in Chinese). The bulletin can be found in 
https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201605/P020160526552803668343.pdf. 
9 The detail of the plan (in Chinese) can be found at 
https://www.gov.cn/gongbao/content/2015/content_2853604.htm. 
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2.2. Water Pollution Action Plan in Shanghai 

As a fast-growing city, Shanghai has a high population density and severe 

environmental problems. Shanghai is located in a coastal plain tidal river network area. 

In addition to the surrounding bodies of water, such as the Yangtze River Estuary, East 

China Sea, and Hangzhou Bay, the inland region is primarily composed of the Huangpu 

River, Suzhou Creek, and their major tributaries, forming an intricate network of small 

and medium-sized rivers. Due to the flat terrain, the water level drop in Shanghai is 

relatively small (Li, Jiang, and Zhu, 2010), and it is easy for sediment and various types 

of garbage to settle in the riverbed. With its rapid economic development, Shanghai has 

suffered severe water pollution. In 2015, among all monitoring stations in Shanghai, 

only 14.7% met types I to III standards, 28.9% met types IV and V standards, and the 

remaining 56.4% had a quality lower than the type V standard.10 

Shanghai released its action plan on water pollution prevention and control in 

December 2015. Consistent with the plan issued by the State Council, the target of the 

Shanghai plan was to eradicate type VI water by 2020.11 To achieve the target, the 

Shanghai plan set up phased tasks. In particular, the Shanghai plan states that the 

proportion of type VI water needed to be reduced to under 15% by 2017 and finally 

eradicated by 2020.  

Once the Shanghai plan was released, the Shanghai government promptly 

implemented the measures outlined in the Shanghai plan (shown in Appendix Table A1), 

and it immediately had an enormous impact on industrial discharge and sewage 

treatment. Figure 1 shows the volume of sewage treatment (shown in Panel A) and the 

volume of chemical oxygen demand discharge in industrial wastewater (shown in Panel 

B) in Shanghai from 2010 to 2020. We observed a jump in sewage treatment volume 

and a steep decline in industrial wastewater discharge soon after the Shanghai plan was 

released. Compared with 2015, the volume of sewage treatment in 2016 increased by 

25.2%, and the volume of chemical oxygen demand (COD) in industrial discharge 

 
10 Shanghai Environmental Status Bulletin in 2015. The bulletin (in Chinese) can be found at 
https://sthj.sh.gov.cn/assets/html/141845.pdf. 
11 The Shanghai plan (in Chinese) can be found at 
https://www.shanghai.gov.cn/nw32868/20200821/0001-32868_46193.html. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4760477

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 9 

decreased by 36.6%. 

With the implementation of various measures, the Shanghai Plan has made a 

difference in surface water quality. Figure 2 shows the surface water quality in Shanghai 

from 2014 to 2021. The lines on the map indicate rivers, and the shade of the line color 

indicates the pollution severity of this river. The darker the color, the more severe the 

pollution. As shown in Figure 2, since 2016, the line color has gradually become lighter, 

indicating a continuous reduction of pollution. At the end of 2020, type VI water was 

finally eradicated, meaning that the government successfully completed the phase tasks 

required by the plan.12 

 

3. Data 

In our paper, we use two sources of data: (1) surface water pollution data and (2) 

housing information at the transaction level. All data range from January 2014 to 

October 2021. All monetary values are deflated using 2014 as the base year.  

 

3.1. Surface Water Pollution Data 

Surface water pollution data are monthly and directly drawn from the 240 

monitoring stations located along rivers within Shanghai. Therefore, each observation 

is at the monthly station level.13 These data are released by the Shanghai Municipal 

Bureau of Ecology and Environment. Figure 3 shows the distribution of these 

monitoring stations. 

The first variable we rely on is a general measurement of water quality. As we 

mentioned above, the water quality is divided into six types, type I to type VI. We 

simply assign numerical values 1, 2, 3, 4, 5, and 6 to types I, II, III, IV, V, and VI water, 

respectively. In this sense, higher numerical values indicate a greater degree of pollution 

severity. This variable is named water pollution in our paper. 

 
12 Shanghai Environmental Status Bulletin in 2020. The bulletin can be found at 
https://sthj.sh.gov.cn/cmsres/d8/d81b87b33c3342328911fd1b8fa15c22/850a653061787042a0f7eb
fe344f8b5d.pdf. 
13 Before the policy, not all monitoring stations consistently reported pollution data on a monthly 
basis. A detailed discussion of this matter can be found in Section 4.4. 
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In addition, we apply the Probit-OLS method for assigning these values (Van Praag 

and Ferrer-i-Carbonell, 2008; Perez-Truglia, 2020). 14  We then normalize it to a 

variable with mean equal to 0 and standard deviation equal to 1. By construction, a 

higher value denotes greater degree of pollution severity. This variable is named water 

pollution (POLS) in our paper.  

Table 1 presents the summary statistics for the aforementioned water pollution 

measurements. On average, water pollution is 4.341 and water pollution (POLS) is 0.  

 

3.2. Housing Transaction Data 

We collected housing transaction data from the Shanghai Agent of Lianjia Real 

Estate Brokerage Corporation. Lianjia, established in 2001, is a prominent real estate 

service company in China that covers a wide range of real estate transaction services, 

including second-hand, new, and rental properties. In 2019, Lianjia’s market share in 

Shanghai reached 20%, making it the largest company in the Shanghai real estate 

market. 15  The dataset we collected covers all transactions involving second-hand 

properties that took place during our sample period. To validate the representativeness 

of Lianjia’s second-hand property transaction data, we compared the per square meter 

prices of second-hand housing from Lianjia with the Shanghai Second-Hand 

Residential Sales Price Index published by the National Bureau of Statistics.16 We also 

compared the second-hand housing transaction area from Lianjia with the 

corresponding statistics from the Shanghai Statistical Yearbook. 17  As shown in 

Appendix Figure A1, the transaction prices and areas of second-hand housing from 

Lianjia are consistent with the government’s officially reported data, confirming the 

 
14 This method consists of assigning values to match the distribution of water pollution to a normal 
distribution. For example, if a fraction q satisfies the lowest category (type II water, as there is no 
type I water in our data, the lowest category is type II water), the Probit-OLS method assigns the 
lowest category a score of 𝐸(𝑧|𝑧 < 𝑞), where z is distributed standard normal. The resulting values 
for the water pollution are -2.286 (type II water), -1.102 (type III water), -0.186 (type IV water), 
0.467 (type V water), and 1.359 (type VI water). 
15 The detailed information (in Chinese) can be found at 
https://www.thepaper.cn/newsDetail_forward_5138978. 
16 The Shanghai Second-Hand Residential Sales Price Index can be found at 
https://data.stats.gov.cn/easyquery.htm?cn=E0104. 
17 The Shanghai Statistical Yearbook 2022 (Table 18.7) can be found at 
https://tjj.sh.gov.cn/tjnj/nj22.htm?d1=2022tjnj/C1807.htm. 
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credibility of Lianjia’s second-hand property transaction data. 

The data include two types of information, one about apartments and the other 

about complexes where the apartments are located. The apartment information includes 

not only transaction prices, transaction time, listing prices, and listing time but also 

apartment characteristics, including housing area, directions that the windows face, the 

number of bedrooms, living rooms, kitchens, and bathrooms, as well as on which floor 

of the building the apartment is located and the total number of floors in the building. 

Complex-level variables include location (i.e., latitude and longitude), construction 

time, and number of apartments and buildings. 

Since we investigate the impacts of the Shanghai plan on housing prices, we only 

retain apartments located no more than 500 meters away from rivers. This selection 

criterion will be elaborated upon in Section 5, where we demonstrate that apartments 

located beyond 500 meters from rivers remained unaffected by the plan. Finally, we 

have 120,482 transactions within our sample period. 

Table 2 presents summary statistics of apartment and complex characteristics. The 

average housing price per square meter in our sample is RMB 42,903 (roughly USD 

6,656 based on exchange rate in 2021), and the average housing area is 79.7 square 

meters. Approximately 96% of the apartments in the sample have a window facing 

south, and approximately 67% have a window facing the river. On average, buildings 

comprise 11 floors, with transacted apartments more commonly located on the highest 

(37%) and middle (35%) 1/3 of floors compared to the lowest 1/3 (28%) or basement 

(nearly 0%). The average numbers of bedrooms, living rooms, kitchens, and bathrooms 

are 2, 1, 1, and 1, respectively. Among the transacted properties, a substantial portion 

(97%) consists of regular residential apartments, with a small fraction (1%) being villas 

or designated for commercial and office use (less than 2%). 

 

4. Impact of the Plan on Water Pollution 

4.1. Empirical Strategy 

As we discussed in Section 2, the target of the plan was to eradicate type VI water 

by 2020. The plan generated useful variation for our identification. That is, river 
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sections classified as type VI in terms of water quality before policy implementation 

were targeted for extensive remediation by relevant authorities. Conversely, river 

sections falling within the water quality range of type I to type V before policy 

implementation remained unaffected by the plan. Combining cross-monitoring station 

variation in policy influence and the before-after policy changes, we can exploit a DID 

strategy to estimate the impact of the plan on water pollution. 

We estimate the following equation: 

𝑦!" = 𝛼# + 𝛼$𝑡𝑟𝑒𝑎𝑡! × 𝑝𝑜𝑠𝑡" + 𝛾𝑋!" + 𝛿" + 𝜇! + 𝜀!"       (1). 

In Equation (1), 𝑦!" is a vector of variables measuring water pollution recorded 

by monitoring station 𝑖  in year-month 𝑡 , including water pollution and water 

pollution (POLS). 𝑡𝑟𝑒𝑎𝑡!  is the major treatment variable. To construct 𝑡𝑟𝑒𝑎𝑡! , we 

calculate the average value of water pollution in 2014 for each monitoring station. 

𝑡𝑟𝑒𝑎𝑡! is equal to one if the average value is higher than five and zero otherwise. 𝑝𝑜𝑠𝑡" 

is a dummy variable that equals one for year-months starting from 2016 and zero 

otherwise. Mean value of 𝑡𝑟𝑒𝑎𝑡! is 0.678 and the mean value of 𝑝𝑜𝑠𝑡" is 0.814 (see 

Table 1). The coefficient of interest is 𝛼$, which measures the DID estimate of the 

water pollution reduction effect of the plan. 𝛿" represents year-month fixed effects that 

control for events affecting all stations within the same period. 𝜇! is the station fixed 

effects controlling for any station-level time-invariant factors. 𝜀!" is the error term with 

a mean equal to zero. To address heteroskedasticity and the correlation between 

monitoring stations located along the same river, we calculate standard errors by 

clustering over rivers.18 

As rivers are interconnected, pollutants in one river may affect the water quality 

of other rivers and monitoring stations. To account for this, we follow Duflo and Pande 

(2007) and include the interaction of the average water quality of other stations within 

5,000 meters around station 𝑖 in 2014 and 𝑝𝑜𝑠𝑡" in 𝑋!".19 However, some stations 

may not have any neighboring stations within a 5,000-meter radius. For such cases, we 

 
18 In our sample, there are 186 rivers. 
19  We incorporate all monitoring stations within a 5,000-meter radius, encompassing not only 
stations situated along the same river but also those from neighboring rivers.  
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assign a value of 0 to the average water quality variable and define a dummy variable 

that indicates whether there are any stations within 5,000 meters of station 𝑖 . We 

incorporate the interaction of the dummy variable and 𝑝𝑜𝑠𝑡" in 𝑋!" as well. Summary 

statistics for these variables can be found in Table 1. Last, seasonal fluctuations in the 

water quality of rivers can occur (Ouyang et al., 2006; Duan et al., 2018), and we 

mitigate this by including the interaction of river dummies and month dummies in 𝑋!". 

 

4.2. Balancing Test 

Since monitoring stations in the treatment group are not randomly selected, for 

example, they could be located in areas with more active economic activities, which 

might raise concerns about their comparability to those in the control group. We 

investigate this issue in this section. 

We use three variables to measure the level of economic activity around the 

monitoring stations. The first variable is the nighttime light intensity (Henderson, 

Storeygard, and Weil, 2012). We calculate average nighttime light intensity within a 

1,000-meter radius of the monitoring station in the year 2014, which is the radiance 

value in units of nano Watts per square cm per steradian (nanoWatt/𝑐𝑚% /sr). We 

construct dummies to measure nightlight intensity, i.e., dummies for nightlight 

intensities between 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, and above 40. 

The second variable is the logarithm form of the distance between the monitoring 

station and sites with high employment concentration (called employment centers 

hereafter), and the third variable is the logarithm distance between the monitoring 

station and the city’s major residential areas. The shorter the distances, the more active 

the economic activities. The details of the sources of all variables in this section can be 

found in Appendix B. 

Columns (1) and (2) in Panel A of Table 3 show the average value of the 

aforementioned variables for the treatment and control groups, respectively. Column (3) 

shows the difference. On average, monitoring stations in the treatment group have 

higher nighttime light intensities and are located closer to the employment centers and 

residential areas. The differences are all statistically significant. This is consistent with 
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our expectation that monitoring stations in the treatment group are more likely to be 

located in areas with more active economic activities. 

To investigate whether controlling for nighttime light intensity and the distances to 

the employment centers and residential areas can improve the comparability between 

the treatment group and control group, we first show the unconditional difference of 

another set of variables, including the number of restaurants, hotels, places for 

entertainment, convenience stores, shopping malls, various schools (including primary 

schools, middle schools and universities), and parks within a 1,000-meter radius of the 

monitoring station in 2014. 20  Column (3) in Panel B of Table 3 shows that the 

unconditional differences of these variables are all statistically significant. However, 

after we control for the variables in Panel A, the differences become insignificant. This 

provides evidence that controlling for the nighttime light intensity dummies and the 

distances to the employment centers and residential areas can improve the 

comparability of the treatment and control groups. Therefore, in our regression model, 

we also include these nighttime light intensity dummies and the distances to the 

employment centers and residential areas (each interacted with 𝑝𝑜𝑠𝑡"). 

 

4.3. Results 

Table 4 shows the estimated impact of the plan on water pollution. In Columns 

(1)-(3), water pollution is assigned values from 1 to 6, with higher values indicating 

more severe pollution. In Columns (4)-(6), water pollution is coded using the Probit-

OLS method, and then normalized to have mean 0 and standard deviation of 1. In 

Columns (1) and (4), we do not include any control variables other than fixed effects. 

In Columns (2) and (5), we control for the interaction of average water quality of other 

stations within 5,000 meters around the station	 𝑖 in 2014 and 𝑝𝑜𝑠𝑡", the interaction of 

a dummy variable indicating whether there are any stations within 5,000 meters of the 

station 𝑖 and 𝑝𝑜𝑠𝑡" , and the interaction of river dummies and month dummies. In 

Columns (3) and (6), we include all control variables.  

 
20 Since these variables have zero values, we do not use the logarithmic form but use the inverse 
hyperbolic sine of these variables, i.e., log+𝑥 + √1 + 𝑥!0.  
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The regression results in Table 4 underscore the robustness of our findings as we 

incorporate additional variables. The coefficients of the interaction of the treatment 

dummy and the post-policy dummy are all negative and statistically significant at the 

1% level in all columns. Using our most preferred specification, Columns (3) and (6) 

show that the coefficient of the interaction term are -0.481 and -0.352 respectively. 

Compared with untreated monitoring stations, the plan reduces the water pollution 

ranking of treated monitoring stations by 0.481, or 0.352 standard deviations.21 

In summary, the above results show that implementing the plan significantly 

reduced water pollution. 

 

4.4. Robustness Checks 

We conduct several robustness checks to justify our findings, which are detailed 

below. 

Parallel Trend. One condition for the DID estimates to be valid is that the outcome 

variables of the treatment and control groups evolve parallelly should there be no policy. 

To investigate whether the condition is satisfied, we estimate the following function: 

𝑦!" = 𝛼# + ∑ 𝛼&𝑡𝑟𝑒𝑎𝑡! × 𝑞𝑢𝑎𝑟𝑡𝑒𝑟&%'
&()* + 𝛾𝑋!" + 𝛿" + 𝜇! + 𝜀!"  (2). 

Essentially, we replace the dummy 𝑝𝑜𝑠𝑡"  with a set of year-quarter dummies 

𝑞𝑢𝑎𝑟𝑡𝑒𝑟&. 𝑚 ranges from -7 to 23. The fourth quarter in 2015 is set as the benchmark 

(𝑚 = 0). Therefore, 𝑚 = −7 indicates seven quarters before the fourth quarter in 

2015 (i.e., the first quarter in 2014, which is the beginning of our sample period), and 

𝑚 = 23 indicates 23 quarters after the fourth quarter in 2015 (i.e., the third quarter in 

2021, which is the end of our sample period). 

We plot the estimated 𝛼& in Figure 4, from which we can see that the coefficients 

before the policy are generally not significant, and their values range around zero. These 

 
21 We construct a dummy variable to denote whether the water is type VI water and use it as the 
outcome variable to estimate Equation (1). Results in Appendix Table A2 show that the plan also 
significantly reduced the probability for the water monitoring stations in the treatment group to have 
type VI water. In Appendix Table A2, we also estimate the impact of the plan on water pollution 
components; the results show that the plan reduced negative value of dissolved oxygen, chemical 
oxygen demand, biochemical oxygen demand after five days, permanganate index, total phosphorus, 
ammonia nitrogen, total nitrogen, cadmium, lead, cyanide, petroleum, and fecal coliform colony 
levels in the water. The effects on other components are not significant. 
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findings provide evidence that the parallel trend assumption holds. It also shows that 

mean reversion does not exist, otherwise the coefficients, particularly the one in the 

period right before the policy, are likely to be much larger than zero.  

Confounding Events. There may have been other policies occurring at the same 

time that were correlated with the plan and affected the outcome variables as well. For 

example, if firms around untreated water monitoring stations (i.e., those that have better 

water quality than type VI) are affected by air pollution reduction policies, they might 

invest more in air pollution reduction, which could crowd out their investment in water 

pollution reduction, leading to a downward bias in our estimation.22 To address this 

concern, we construct a measure of fine particulate matter (𝑃𝑀%.,) intensity, which is 

the monthly average 𝑃𝑀%., level within the 1,000-meter neighborhood around water 

monitoring stations.23 We add this variable to Equation (1), and the results are shown 

in Columns (1) and (4) of Table 5. We can see that the coefficients of our main variables 

of interest remain similar, suggesting that the possible policies to reduce air pollution 

do not affect our main results. 

Some evidence suggests that continuous rainfall may result in poor water quality 

in rivers (Hanke et al., 2010; Passerat et al., 2011). This is because the pipes that 

discharge rainwater and sewage are often combined, making it challenging for sewage 

treatment plants to handle excess sewage during heavy rainfall. Consequently, plants 

may release rainwater mixed with pollutants into the river. To account for this issue, we 

incorporated the cumulative monthly precipitation within a 1,000-meter radius of 

station 𝑖 in Equation (1), and the results are shown in Columns (2) and (5) of Table 

5.24 We can see that the coefficients of our main variables of interest remain similar. 

Reporting Frequency Change. Prior to the policy implementation (before 

 
22 The air pollution control policies issued by the Chinese government during the same period, as 
mentioned by Karplus, Zhang, and Zhao (2021), “for example, the Action Plan on Air Pollution 
Prevention and Control, which was announced in September 2013 and focused on 10 key measures 
known as the ‘Air Ten,’ required early retirement of the most-polluting plants, accelerated 
substitution of natural gas for coal, and strengthened automobile tailpipe emissions and fuel quality 
standards. In 2018, the Air Ten was replaced by the Three-Year Action Plan for Winning the Blue 
Sky War, which set more aggressive targets for SO2, NOx, and fine particulate matter (PM2.5) by 
2020”. 
23 The detailed data source can be found in Appendix B. 
24 The detailed data source can be found in Appendix B. 
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December 2015), not all monitoring stations consistently reported pollution data on a 

monthly basis. Some stations reported data bi-monthly, quarterly, or semi-annually, 

only transitioning to monthly reporting after the policy came into effect. To investigate 

whether reporting frequency change could affect our estimation results, we reconstruct 

the sample to ensure the consistency of reporting frequency of each monitoring station 

before and after the policy change. For example, if a monitoring station reports data in 

January, March, May, July, September, and November before the policy, the data from 

February, April, June, August, October, and December after the policy is excluded. 

Results using this new sample are presented in Columns (3) and (6) of Table 5. They 

remained consistent with our main findings. This indicates that the change in reporting 

frequency does not alter the conclusions drawn in this paper. 

Permutation Test. To address the concern that our results may be driven by random 

factors, we conduct a permutation test. In particular, we randomly assign the treatment 

status among the water monitoring stations, and then we re-estimate Equation (1). We 

repeat this process 2,000 times such that we have 2,000 coefficients of the 

𝑡𝑟𝑒𝑎𝑡! × 𝑝𝑜𝑠𝑡"  term for each outcome variable. We plot the distribution of these 

coefficients in Figure 5. The dashed lines perpendicular to the x-axis represent the 

estimated coefficients from Columns (3) and (6) in Table 4. We can see that for either 

outcome variable, the dashed line lies at the far end of the distribution. Figure 5 also 

shows the empirical p values, all of which are smaller than 1%. These findings justify 

that our main findings are not driven by random factors. 

 

5. Impact of the Plan on Housing Prices and its Implications for Inequality 

5.1. Empirical Strategy 

We then estimate the impact of the plan on housing prices. One difficulty is how 

to measure the extent to which each apartment was affected by the plan. We describe 

how we do it using an example (see Figure 6). To determine the treatment status of 

Apartment A, we first find a location (e.g., Location A) along each river that has the 

shortest distance from Apartment A using information on the latitude and longitude of 
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the complex where the apartment is located.25 We then match Apartment A to a river 

(say, River A), for which the distance between Apartment A and Location A on the river 

is the minimum. After matching apartments with rivers, we can calculate the distance 

from Location A to each monitoring station located on the same river; thus, we can 

identify the monitoring station (say, Station A) with the shortest distance to Location A 

on the same river. Therefore, the treatment status of Station A is assigned to Apartment 

A. 

By doing so, we can exploit a DID strategy to estimate the impact of the plan on 

housing prices. The following equation is estimated: 

ln	(𝑃𝑟𝑖𝑐𝑒-.") = 𝛽# + 𝛽$𝑡𝑟𝑒𝑎𝑡. × 𝑝𝑜𝑠𝑡" + 𝜂𝑊-." + 𝛿" + 𝜃. + 𝜏-."    (3). 

In Equation (3), 𝑃𝑟𝑖𝑐𝑒-."  is the average housing price per square meter for 

apartment 𝑎 located in complex 𝑐  and transacted in year-month 𝑡. 𝑡𝑟𝑒𝑎𝑡.  is the 

treatment status for apartments located in complex 𝑐, which is defined above. 𝑝𝑜𝑠𝑡" 

is a dummy variable that equals one for years starting from 2016 and zero otherwise. 

𝛽$ is the coefficient of the main interest. 𝛿" and 𝜃. are year-month fixed effects and 

complex fixed effects, respectively. 𝛿" is used to control for any events occurring in 

the same year-month, and 𝜃. is used to control for any time-invariant factors within 

the same complex. 𝜏-." is an error term with a mean equal to zero. As in Section 4.3, 

we calculate standard errors by clustering over rivers. 

In Equation (3), we also include a vector of variables 𝑊-.", which include the 

characteristics of apartments transacted. They are housing area, a dummy for having a 

south-facing window, a dummy for having a river-facing window, and the number of 

building floors. In addition, we control for a set of fixed effects for whether the 

apartment is located on the highest 1/3, middle 1/3, or lowest 1/3 floors or in the 

basement, number of bedrooms, number of living rooms, number of kitchens, number 

of bathrooms, and different types of apartment usage. Finally, we include the same set 

of control variables of Equation (1) in 𝑊-.".  

 

 
25 We obtained latitude and longitude information only at the complex level, not for each individual 
apartment. 
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5.2. Results 

In our paper, we restrict our analysis to apartments located within 500 meters of 

the nearest river. We will return to this issue later. 

The estimation results of the impact of the plan on housing prices are shown in 

Table 6. In this table, the outcome variable is the logarithmic form of the housing price. 

In all columns, we control for year-month fixed effects and complex fixed effects. We 

can see from Column (1) that the coefficient of the interaction of the treatment dummy 

and post dummy is equal to 0.033 and significant at the 5% level. In Column (2), we 

add the logarithm of housing area. The coefficient of the interaction term is similar, 

equal to 0.032 and significant at the 5% level. In Column (3), we further add a dummy 

for having a south-facing window, a dummy for having a river-facing window, and the 

number of building floors (divided by 100). We can see that the coefficient of the 

interaction term is similar, equal to 0.033 and significant at the 5% level. In Column 

(4), we add more variables denoting housing characteristics, including a set of fixed 

effects for whether the apartment is located on the highest 1/3, middle 1/3, or lowest 

1/3 floors or in the basement, number of bedrooms, number of living rooms, number of 

kitchens, number of bathrooms, and different types of apartment usage. The coefficient 

of the interaction term is 0.030 and significant at the 5% level. In Column (5), we add 

all control variables in Equation (3). The coefficient is equal to 0.035 and significant at 

the 1% level. 

Using the specification in Column (5), which we favor the most, the plan increased 

the housing price of apartments near rivers by 3.5%. Considering Shanghai’s average 

second-hand housing prices increased by 63.5% over our sample period (see Figure A1), 

the increment attributable to the plan is roughly 5.5% of the overall increase. Given that 

the average housing price is 35,470 yuan before the policy in the treatment group, our 

estimates suggest that the implementation of the plan increased the housing price by 

1,241 yuan. The average housing area of apartments in treatment group is 79.5 m2. This 

means that for a property in the treatment group, the implementation of the plan resulted 

in an appreciation of 98,660 yuan. In 2016, the average disposable income per capita in 
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Shanghai was 54,305 yuan.26 Thus, property appreciation was nearly twice the average 

disposable income per capita. 

As we mentioned above, we restrict our analysis to apartments located within 500 

meters of the nearest river. We also estimate Equation (3) using apartments located 

within areas between 500-1,000 meters, 1,000-1,500 meters, 1,500-2,000 meters, and 

2,000-2,500 meters around the nearest river. We plot the coefficients and 95% 

confidence intervals of the 𝑡𝑟𝑒𝑎𝑡. × 𝑝𝑜𝑠𝑡"  term in Appendix Figure A2. For 

convenience of comparison, we also plot the coefficient estimated using apartments 

located within 500 meters of the nearest river (i.e., that in Column (5) in Table 6). Only 

the coefficient using the closest apartments is significant. This means that the plan only 

affected the housing prices in nearby complexes. In the remaining analysis, we focus 

on this sample. 

 

5.3. Robustness Checks 

Parallel Trend. Essentially, we compare housing prices near the rivers affected 

by the plan and those near the rivers not affected by the plan. One condition is needed 

to ensure the validity of our identification strategy. That is, the evolution of housing 

prices between the treatment and control groups needs to be parallel should there be no 

policy change. To check whether this condition is satisfied, we estimate the following 

equation: 

ln	(𝑃𝑟𝑖𝑐𝑒-.") = 𝛽# + ∑ 𝛽&𝑡𝑟𝑒𝑎𝑡. × 𝑞𝑢𝑎𝑟𝑡𝑒𝑟&%'
&()* + 𝜂𝑊-." + 𝛿" + 𝜃. + 𝜏-."  

(4). 

In this equation, 𝑚 is defined the same as in Equation (2). We plot the estimated 

coefficients 𝛽&  in Figure 7. From this figure, we can see that the estimates of 

coefficients are not significant before the plan, which provides evidence for the validity 

of the parallel trend assumption. This analysis also confirms the absence of mean 

reversion, as the coefficients, especially the one immediately before the policy 

implementation, are not significantly smaller than zero. 

 
26 Please refer to https://tjj.sh.gov.cn/ydsj71/20170122/0014-293195.html. 
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It also provides evidence that owners of apartments in the treatment group did not 

postpone listing the apartments in the market in anticipation of the policy 

implementation, otherwise we expect to observe significant effects right before the 

policy.  

Confounding Events. In Section 4.4, we discuss the presence of concurrent air 

pollution reduction policies that may be correlated with the plan and could impact the 

outcome variables. The same issue also exists in the current context. To address this 

concern, we implement a similar robustness check as presented in Section 4.4. 

Specifically, we construct a measure of 𝑃𝑀%., intensity, which is the monthly average 

𝑃𝑀%., level within the 1,000-meter neighborhood around water monitoring stations. 

We incorporate this variable into Equation (3), and the results are shown in Column (1) 

of Table 7. The coefficients of our main variables of interest remain similar, suggesting 

that the potential air pollution reduction policies do not significantly affect our main 

findings. In addition, for the same reason as in Section 4.4, continuous rainfall may 

result in poor water quality in rivers and have an impact on housing values. To account 

for this issue, we incorporated the cumulative monthly precipitation within a 1,000-

meter radius of station 𝑖 in Equation (3), and the results are shown in Column (2) of 

Table 7. The coefficients of our main variables of interest remain similar. 

In addition to air pollution control policies, the opening of subway stations may 

be related to the plan. For example, the government may anticipate that environmental 

improvements will foster local economic development, thus build more subway stations 

nearby. Moreover, the opening of subway stations could have an impact on property 

prices. To address this concern, we include the number of subway stations within a 2-

kilometer radius of the apartment at the time of the transaction in Equation (3). The 

result is presented in Column (3) of Table 7. The coefficients of our main variables of 

interest remain similar, suggesting that the opening of subway stations does not 

significantly affect our main findings. 

Other Robustness Checks. In our primary setting, the treatment status of a specific 

apartment is determined by a single monitoring station. To assess the robustness of our 

findings regarding this treatment determination method, we utilize information from 
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two monitoring stations positioned upstream and downstream of the nearest river to 

derive the treatment status for a particular apartment. We use the same example in 

Section 5.1 to illustrate how we use information from two monitoring stations. In the 

baseline regression, we utilize only the information from Station A to determine the 

treatment status for Apartment A (see Figure 6). In this robustness check, we use 

information from both Station A and Station B positioned upstream and downstream of 

Location A along River A to determine the treatment status. 27  We calculate the 

weighted average value of water pollution in 2014 for the two monitoring stations 

(inversely weighted by each monitoring station’s distance to Location A). 𝑡𝑟𝑒𝑎𝑡! is 

equal to one if the average value is higher than five and zero otherwise. The control 

variables related to the monitoring station are also constructed through the same method. 

The results are presented in Column (4) of Table 7. The coefficients of our main 

variables of interest remain similar. 

Furthermore, we conduct additional regression analyses to assess the robustness 

of our findings. First, we exclude apartments constructed after the implementation of 

the plan, and the corresponding results are presented in Column (5) of Table 7. 

Subsequently, we focus on apartments located within 400 meters of the nearest river, 

and the outcomes are detailed in Column (6) of Table 7. We extend this analysis to 

include apartments within 600 meters of the nearest river, and these results can be found 

in Column (7) of Table 7. Additionally, we substitute the unit price with the total 

housing value as the outcome variable, and this result is displayed in Column (8) of 

Table 7. Notably, our main coefficients of interest remain consistent across these 

various specifications. 

Permutation Test. To address the concern that our results may be driven by random 

factors, we conduct a permutation test. In particular, we randomly assign the treatment 

status among complexes, and then we re-estimate Equation (3). We repeat this process 

2,000 times such that we have 2,000 coefficients of the 𝑡𝑟𝑒𝑎𝑡. × 𝑝𝑜𝑠𝑡" term for each 

outcome variable. We plot the distribution of these coefficients in Figure 8. The dashed 

 
27 If there is only one monitoring station on the nearest river, then we use only the information of 
that station, which is the same as in the baseline regression. 
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line perpendicular to the x-axis represents the estimated coefficient from Table 6. The 

dashed line lies at the far end of the distribution. Figure 8 also shows the empirical p 

value, which is smaller than 1%. These findings confirm that our main findings are not 

driven by random factors. 

 

5.4. Channels 

    There are several channels for the plan to affect housing prices. First, the improved 

water quality of rivers might increase demand for nearby apartments, which increases 

housing prices. Second, the effects of the supply side are not certain. On the one hand, 

after the water quality was improved, more apartments could be sold in the market since 

it was easier for the owners to sell their assets. On the other hand, the owners might 

have kept the apartments for their own use after the water quality of nearby rivers was 

improved, leading to a decrease in the supply of apartments in the housing market. 

Third, the characteristics of apartments in the market could be different, which could 

also affect housing prices. In this section, we investigate through which channels the 

plan affected housing prices. 

    Demand Side. We use the number of potential buyers’ visits per day to each 

apartment during the period between the listing day and the sale day as a proxy for the 

demand for apartments. We estimate Equation (3) by using this new outcome variable. 

The results are shown in Table 8. Column (1) uses the whole sample, while Column (2) 

excludes apartments listed before the policy implementation and sold after. The 

coefficients of the interaction term are 0.068 in Column (1) and 0.094 in Column (2), 

both of which are statistically significant at the 5% level. The results reveal that there 

were more visits to apartments near monitoring stations affected by the policy 

compared with those near monitoring stations that were not affected. This suggests that 

the implementation of the plan increased demand for apartments. 

    Supply Side. We do not have the number of apartments available in the market but 

have only the number of transacted apartments, which is jointly determined by demand 

and supply. We therefore estimate the impact of the plan on the equilibrium quantity 

and derive the impact on the supply. 
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Table 9 shows the estimates of the impact of the plan on the number of transacted 

apartments. The outcome variable in Column (1) is the proportion of sold apartments 

to the total number of apartments in the complex each year, while the outcome variable 

in Column (2) is the number of sold apartments in each complex in each year. The 

coefficient of the interaction term is not significant in either column, suggesting that 

the implementation of the plan did not affect the number of transacted apartments. 

Since we have already shown that the implementation of the plan increased 

housing prices and attracted greater demand, our finding that the equilibrium quantity 

did not change suggests that the supply of apartments near rivers in the housing market 

could decrease under the assumption that the demand curve is downward sloping and 

the supply curve is upward sloping.28 

Housing Characteristics. Although we show above that the number of transacted 

apartments did not change because of the plan, it could be possible that the 

characteristics of the transacted apartments were different. We investigate this issue in 

this section. To do so, we estimate Equation (3) but replace housing prices with different 

housing characteristics. The results are shown in Table 10. The coefficients of the 

interaction term are not significant for the majority of housing characteristics. One of 

the significant coefficients is for the dummy for having a river-facing window, which 

is equal to -0.023 and significant at the 5% level. One possible explanation could be 

that after the water quality was improved, the owners of the apartments with windows 

facing the river were more willing to live in the apartments such that the supply of such 

apartments was reduced in the markets. The other significant coefficient is for the 

number of bedrooms. This means that apartments in the treatment group with more 

bedrooms were easily transacted after the policy. 

In summary, we find that the implementation of the plan attracted greater demand 

for apartments, but the supply decreased. Moreover, the decrease in the supply is mainly 

 
28 An alternative interpretation of our findings could be that the supply of apartments listed in the 
second-hand housing market was inelastic, resulting in higher prices as demand increased, while 
the equilibrium quantity remained unchanged. However, this possibility is less likely to be true 
because the yearly number of listed apartments in the second-hand housing market has varied 
between 1,443 and 24,694 during our sample period, with a standard deviation of 8,830.   
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due to the decrease in apartments with windows facing the river. 

 

5.5. Implications for Inequality 

In this section, we discuss the impacts of the plan on wealth inequality. Housing 

property is the most important type of wealth for Chinese families. According to the 

China Household Wealth Survey Report (2018), housing property accounted for 66.35% 

of family wealth in China in 2017.29 Therefore, any fluctuations in real estate prices 

could have a substantial impact on wealth distribution and wealth inequality among 

Chinese households. In this section, we investigate how the water pollution reduction 

policy affected wealth inequality in Shanghai. 

First, we construct a dummy variable, denoted as ℎ𝑖𝑔ℎ., which measures whether 

the complex’s pre-policy housing prices were above the median. To create the variable 

ℎ𝑖𝑔ℎ., we use properties transacted before the implementation of the plan and regress 

the total housing value of each apartment on the housing area and year-month fixed 

effects. We keep the residuals and calculate the mean of residuals for each complex. If 

the mean of the residuals for each complex is higher than the median, then ℎ𝑖𝑔ℎ. = 1; 

otherwise, ℎ𝑖𝑔ℎ. = 0. By using the residuals instead of the total housing value or the 

housing price, we can partial out the time effect and the effect of housing area and 

capture only the quality of each complex in ℎ𝑖𝑔ℎ.. Then, we estimate the following 

equation: 

ln	(𝑃𝑟𝑖𝑐𝑒-.") = 𝛽# + 𝛽$𝑡𝑟𝑒𝑎𝑡. × 𝑝𝑜𝑠𝑡" × ℎ𝑖𝑔ℎ. + 𝛽%𝑡𝑟𝑒𝑎𝑡. × 𝑝𝑜𝑠𝑡" +

𝛽'𝑝𝑜𝑠𝑡" × ℎ𝑖𝑔ℎ. + 𝜂𝑊-." + 𝛿" + 𝜃. + 𝜏-."    (5). 

In Equation (5), all variables except ℎ𝑖𝑔ℎ. are the same as in Equation (3). We 

use the same sample in Table 6 to estimate Equation (5), and the result is reported in 

Table 11. The results show that the price of apartments located in complexes with high 

pre-policy housing prices increased more after the plan. 

Second, we use data from the 2010 population census of China to calculate the 

average building area per capita and the employment rate for each subdistrict in 

 
29 The Chinese version of the report can be found at https://www.gov.cn/xinwen/2018-
12/28/content_5352858.htm. 
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Shanghai. 30  We use our property transaction data to calculate the proportion of 

treatment apartments to total apartments for each subdistrict in Shanghai. We show the 

relationship of these variables in Figure 9. Panel A in Figure 9 shows the relationship 

between the proportion of treatment apartments to total apartments and the average 

building area per capita, while Panel B shows the relationship between the proportion 

of treatment apartments to total apartments and the employment rate. As we can see, 

for subdistricts with larger average building areas per capita and higher employment 

rates, the proportion of policy-influenced apartments is higher. This means that in 

subdistricts with better economic conditions in 2010 (proxied by larger building areas 

and higher employment rates), there was a greater proportion of houses experiencing 

price increases after the policy was implemented. In addition, in Table 3, we show that 

the areas surrounding the monitoring stations of the treatment group exhibit more 

favorable economic conditions and are also in closer proximity to the employment 

centers and residential zones. This also means that areas with favorable economic 

conditions and in closer proximity to the city centers experienced greater increases in 

housing prices after the plan. 

In summary, these findings suggest that the plan resulted in further widening of 

wealth inequality in Shanghai. 

 

6. Conclusions 

In this paper, we investigate the impact of China’s 2015 water pollution reduction 

policy on water pollution and housing prices using data from Shanghai. We find that 

the implementation of the policy significantly reduced water pollution. Then, we 

estimate the impact of the policy on housing prices, and we find that the policy had a 

significantly positive impact on housing prices for apartments located within 500 

meters of the river. Further analysis shows that the impact on housing prices occurred 

through increased demand and reduced supply of apartments after the policy. Finally, 

 
30 In urban areas of China, a prefecture-level city comprises three different levels of administrative 
divisions. The highest level is the district, which is a lower-level administrative division within a 
prefecture-level city, such as Huangpu District in Shanghai. One level below that is the subdistrict, 
for example, Waitan Subdistrict in Huangpu District, Shanghai. The lowest level is the complex. 
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we find that the impact was larger for apartments with higher prices before the policy, 

which implies that the water pollution reduction policy might have had an unintended 

consequence in increasing wealth inequality. 

China has faced increasingly severe challenges from the deterioration of the 

environment during the process of its fast economic growth. The Chinese government 

has invested heavily in pollution reduction. Our paper provides evidence supporting the 

effectiveness of pollution reduction policies. However, our results also show that 

pollution reduction policies might have an unintended effect on increasing wealth 

inequality. This implies that policy-makers need to take this effect into account in the 

evaluation of current pollution reduction policies or the making of future policies. 

In our paper, we find that a water pollution reduction policy was effective in 

reducing water pollution. This result is not consistent with that of Greenstone and 

Hanna (2014), who showed that a water pollution reduction policy was not effective 

using Indian data. The inconsistency may be because we focus on data from Shanghai, 

one of the most advanced cities in China and similar to cities in developed countries. 

Exploring whether the water pollution policy had different effects in less developed 

areas and the potential reasons requires broader data and further study. 
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Figure 1. Volume of Sewage Treatment and COD Industrial Discharge in Shanghai 

 

 
Note: This figure shows the volume of sewage treatment (Panel A) and the volume of chemical 
oxygen demand (COD) discharge in industrial wastewater (Panel B) in Shanghai from 2010 to 2020. 
The data source is the Shanghai Statistical Yearbook 2021. 
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Figure 2. Surface Water Quality in Shanghai from 2014 to 2021 
 

 
Note: This figure shows the surface water quality in Shanghai from 2014 to 2021. The lines on the 
map indicate river sections, and the shade of the line color indicates the pollution severity of this 
river section. The darker the color is, the more severe the pollution. The data source is the Shanghai 
Municipal Bureau of Ecological Environment. 
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Figure 3. Distribution of Water Monitoring Stations 

 
Note: This figure shows the map of Shanghai surface water monitoring stations. The blue lines on 
the map indicate river sections, and the red dots indicate the surface water monitoring stations. The 
data source is the Shanghai Municipal Bureau of Ecological Environment. 
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Figure 4. Test for Parallel Trends of Water Quality 

 

 
Note: We replace the interaction term Treat×Post with interactions between Treat and indicators for 
quarters relative to the policy implementation, and the figures above plot the estimated coefficients 
of these interactions. The control variables used in this parallel trend test are the same as those in 
Columns (3) and (6) of Table 4. The fourth quarter in 2015 is set as the benchmark. On the x-axis, -
7 indicates seven quarters before the fourth quarter in 2015 (i.e., the first quarter in 2014, which is 
the beginning of our sample period), and 23 indicates 23 quarters after the fourth quarter in 2015 
(i.e., the third quarter in 2021, which is the end of our sample period). 
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Figure 5. Permutation Test 

 

 
Note: Water pollution (POLS) is normalized Probit-OLS transformation of water pollution. We 
randomly assign the treatment status among the water monitoring stations and re-estimate Equation 
(1). This process is repeated 2,000 times such that we have 2,000 coefficients of the Treat×Post 
term for each outcome variable. The figures above plot the distribution of these coefficients. The 
dashed lines perpendicular to the x-axis represent the estimated coefficients from Columns (3) and 
(6) in Table 4.  
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Figure 6. Graph Example 

 

Note: A graph example to show how we assign the treatment status for each apartment. To determine 
the treatment status of Apartment A, we first find a location (e.g., Location A) along each river that 
has the shortest distance from Apartment A using information on the latitude and longitude of the 
complex where the apartment is located. We then match Apartment A to a river (say, River A), for 
which the distance between Apartment A and Location A on the river is the minimum. After 
matching apartments with rivers, we can calculate the distance from Location A to each monitoring 
station located on the same river; thus, we can identify the monitoring station (say, Station A) with 
the shortest distance to Location A on the same river. Therefore, the treatment status of Station A is 
assigned to Apartment A. 
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Figure 7. Test for Parallel Trends of Housing Prices 
 

 
Note: We replace the interaction term Treat×Post with interactions between Treat and indicators for 
quarters relative to the policy implementation, and the figure above plots the estimated coefficients 
and confidence intervals of these interactions. The control variables used in this parallel trend test 
are the same as those in Column (5) of Table 6. The fourth quarter in 2015 is set as the benchmark. 
On the x-axis, -7 represents seven quarters before the fourth quarter in 2015 (i.e., the first quarter in 
2014, which is the beginning of our sample period), and 23 indicates twenty-three quarters after the 
fourth quarter in 2015 (i.e., the third quarter in 2021, which is the end of our sample period). 
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Figure 8. Permutation Test for the Impact of Housing Prices 
 

 
Note: We randomly assign the treatment status among the complexes and re-estimate Equation (3). 
This process is repeated 2,000 times such that we have 2,000 coefficients of the Treat×Post term. 
The figure above plots the distribution of these coefficients. The dashed line perpendicular to the x-
axis represents the estimated coefficient from Column (5) in Table 6. 
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Figure 9. Proportion of Treatment Apartments to Total Apartments, Average Building Area 
per Capita and Employment Rates at the Subdistrict Level 

 

 
Note: The average building area per capita and the employment rate for each subdistrict are 
calculated from the 2010 population census of China. The proportion of treatment apartments to 
total apartments for each subdistrict is calculated from our property transaction data. 
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Table 1. Variable Definitions and Sample Statistics for Surface Water Pollution (N=18,701) 
Variable Definition Mean S.D. 

Water pollution 

Water quality classification, represented by values 

1, 2, 3, 4, 5, and 6, with higher values indicating 

more severe pollution. 4.341 1.198 

Water pollution (POLS) 

Based on the following classifications: “Type I, II, 

III, IV, V, and VI water.” These six categories are 

assigned values using Probit-OLS method, and then 

the variable is standardized to have mean 0 and 

standard deviation 1. Higher values denote more 

severe pollution. -0.000 1.000 

Treat 

A dummy variable representing whether the 

monitoring station is in the treatment group. 0.678 0.467 

Post 

Takes the value 1 for the years 2016 and after, and 

takes the value 0 for the years 2014-2015. 0.814 0.389 

Average water quality of 

nearby stations 

Average water quality of other stations within 5,000 

meters around the station in 2014. If there is no 

other surrounding station, a value of 0 is assigned. 4.926 1.479 

Surrounding stations 

A dummy variable indicating whether there is a 

station within 5,000 meters around the station, 

yes=1, otherwise=0. 0.938 0.240 

Note: All variables are at the monthly station level. Definitions, means, and standard deviations are 

reported. The data sources are described in Section 3.1. 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4760477

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



 42 

Table 2. Variable Definitions and Sample Statistics for Properties within 500 Meters of Rivers 

(N=120,482) 

Variable Definition Mean S.D. 

Housing price 

Housing price (units: RMB/m2, adjusted to 

2014 RMB using the CPI from the National 

Bureau of Statistics of China). 42,903.039 17,176.764 

Treat 

A dummy variable representing whether the 

apartment is in the treatment group. 0.866 0.340 

Post 

Takes the value 1 for the years 2016 and after, 

and takes the value 0 for the years 2014-2015. 0.889 0.314 

Housing area Residential area (units: m2). 79.735 39.497 

Having a south-facing 

window Presence of a south-facing window. 0.963 0.190 

Having a river-facing 

window Presence of a river-facing window. 0.669 0.471 

Number of building floors Number of floors in the building. 10.969 7.918 

Highest floor 

The apartment is located on the highest 1/3 

floors of the building=1, otherwise=0. 0.367 0.482 

Middle floor 

The apartment is located on the middle 1/3 

floors of the building=1, otherwise=0. 0.349 0.477 

Lowest floor 

The apartment is located on the lowest 1/3 

floors of the building=1, otherwise=0. 0.283 0.451 

Basement 

The apartment is located in the basement of the 

building=1, otherwise=0. 0.000 0.012 

Number of bedrooms Number of bedrooms. 2.003 0.781 

Number of living rooms Number of living rooms. 1.364 0.594 

Number of kitchens Number of kitchens. 0.974 0.160 

Number of bathrooms Number of bathrooms. 1.183 0.462 

Villa The department is a villa=1, otherwise=0. 0.011 0.105 

Regular dwelling 

The department is a regular dwelling=1, 

otherwise=0. 0.972 0.165 

Commercial property 

Apartment for commercial and office use=1, 

otherwise=0. 0.017 0.129 

Average water quality of 

nearby stations 

Average water quality of other stations within 

5,000 meters around the station in 2014. If 

there is no other surrounding station, a value of 

0 is assigned. 5.484 0.664 

Surrounding stations 

A dummy variable indicating whether there is 

a station within 5,000 meters around the 

station, yes=1, otherwise=0. 0.990 0.099 

Note: All variables are at the property transaction level. Definitions, means, and standard deviations 

are reported. The data sources are described in Section 3.2. 
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Table 3. Balancing Test (All Variables use Values from 2014). 

Variable 

Treatment 

group 

Control 

group 

Unconditional 

diff. 

Conditional 

diff. 

  (1) (2) (3) (4) 

Panel A: Key control variables         

Dummy for light intensity between 0-5 0.049 0.395 -0.346***  
  (0.216) (0.492) (0.063)   

Dummy for light intensity between 5-10 0.073 0.171 -0.098**  
  (0.261) (0.379) (0.048)   

Dummy for light intensity between 10-15 0.152 0.132 0.021  
  (0.361) (0.340) (0.047)   

Dummy for light intensity between 15-20 0.104 0.053 0.051  
  (0.306) (0.225) (0.037)   

Dummy for light intensity between 20-25 0.146 0.066 0.081**  
  (0.355) (0.250) (0.040)   

Dummy for light intensity between 25-30 0.146 0.066 0.081**  
  (0.355) (0.250) (0.040)   

Dummy for light intensity between 30-35 0.152 0.053 0.100***  
  (0.361) (0.225) (0.038)   

Dummy for light intensity between 35-40 0.110 0.039 0.070**  
  (0.314) (0.196) (0.033)   

Dummy for light intensity larger than 40 0.067 0.026 0.041  
  (0.251) (0.161) (0.027)   

Ln(distance from the employment centers) 2.696 3.230 -0.534***  
  (0.888) (0.732) (0.119)   

Ln(distance from the residential areas) 2.085 2.805 -0.721***  
  (1.024) (0.879) (0.145)   

Panel B: Other characteristics (All take the inverse hyperbolic sine form) 

Number of restaurants 3.275 1.779 1.496*** 0.329 

  (2.002) (1.742) (0.282) (0.239) 

Number of hotels 1.796 0.906 0.890*** 0.132 

  (1.381) (1.202) (0.200) (0.175) 

Number of entertainment places 2.036 1.126 0.910*** 0.176 

  (1.510) (1.142) (0.191) (0.179) 

Number of convenience stores 2.584 1.454 1.130*** 0.287 

  (1.507) (1.404) (0.211) (0.188) 

Number of shopping malls 0.586 0.256 0.330*** 0.049 

  (0.755) (0.534) (0.085) (0.090) 

Number of schools 1.199 0.636 0.563*** 0.118 

  (1.208) (0.853) (0.141) (0.123) 

Number of parks 0.589 0.192 0.398*** 0.096 

  (0.918) (0.552) (0.097) (0.097) 

Observations 164 76     

Note: This table reports the summary statistics of the treatment and control samples. Panel A shows 
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the comparison of key control variables between the treatment and control groups. Panel B compares 
the treatment and control groups in terms of various economic development variables in 2014, both 
before and after controlling for the key control variables. Columns 1 and 2 show the means and 
standard deviations. Column 3 reports the unconditional differences between the treatment and 
control groups. Column 4 reports the conditional differences of these characteristics of a regression 
on the treatment dummy controlling for the key control variables. The standard errors are reported 
in parentheses. *, **, and *** denote statistical significance at 10%, 5%, and 1%, respectively. 
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Table 4. Impact of the Water Pollution Reduction Policy on Water Pollution 
  (1) (2) (3) (4) (5) (6) 

Variable Water pollution Water pollution (POLS) 

              

Treat × Post -0.687*** -0.491*** -0.481*** -0.512*** -0.358*** -0.352*** 

 (0.077) (0.062) (0.061) (0.063) (0.046) (0.047) 

       
Observations 18,701 18,701 18,701 18,701 18,701 18,701 

R-squared 0.637 0.689 0.691 0.639 0.691 0.692 

Other controls NO Partial YES NO Partial YES 

Year-month FE YES YES YES YES YES YES 

Station FE YES YES YES YES YES YES 

Mean of dept. var. 4.341 4.341 4.341 -0.000 -0.000 -0.000 

Note: (1) Treat is a dummy variable representing the assignment of monitoring stations to either 
the treatment group (Treat=1) or the control group (Treat=0). To construct Treat, we calculate the 
average value of water quality in 2014 for each monitoring station. Treat is equal to one if the 
average value is higher than five and zero otherwise. Post is a dummy variable that equals one for 
year-months starting from 2016 and zero otherwise. 
(2) In columns 1-3, water pollution is assigned values from 1 to 6, with higher values indicating 
more severe pollution. In columns 4-6, water pollution is coded using the Probit-OLS method, and 
then normalized to have mean 0 and standard deviation of 1. 
(3) Other controls include the interaction of average water quality of other stations within 5,000 
meters around the station in 2014 and Post, the interaction of a dummy variable indicating whether 
there are any stations within 5,000 meters of the station and Post, the interaction of river dummies 
and month dummies, the interactions of the nightlight intensity dummy variables and Post, the 
interactions of the logarithm distance to employment centers and Post, and the interactions of the 
logarithm distance to residential areas and Post. In columns 1 and 4, we do not include any variables 
from “Other controls.” In columns 2 and 5, we control for the interaction of average water quality 
of other stations within 5,000 meters around the station in 2014 and Post, the interaction of a dummy 
variable indicating whether there are any stations within 5,000 meters of the station and Post, and 
the interaction of river dummies and month dummies. In columns 3 and 6, we include all variables 
from “Other controls.” 
(4) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 5. Robustness Checks for the Impact of the Plan on Water Pollution 
  (1) (2) (3) (4) (5) (6) 

Variable Water pollution Water pollution (POLS) 

              

Treat × Post -0.477*** -0.474*** -0.461*** -0.348*** -0.346*** -0.338*** 

 (0.061) (0.052) (0.062) (0.046) (0.039) (0.048) 

 

  
    

Observations 18,523 18,095 12,858 18,523 18,095 12,858 

R-squared 0.685 0.692 0.715 0.686 0.694 0.714 

PM2.5 YES NO NO YES NO NO 

Rain NO YES NO NO YES NO 

Other controls YES YES YES YES YES YES 

Year-month FE YES YES YES YES YES YES 

Station FE YES YES YES YES YES YES 

Mean of dept. var. 4.358 4.366 4.381 0.0154 0.0212 0.0277 

Note: (1) Treat, Post and Other controls are the same as the definitions in Table 4. 
(2) In columns 1-3, water pollution is assigned values from 1 to 6, with higher values indicating 
more severe pollution. In columns 4-6, water pollution is coded using the Probit-OLS method, and 
then normalized to have mean 0 and standard deviation of 1. 
(3) Columns 1 and 4 control for the monthly average PM2.5 level within the 1,000-meter 
neighborhood around water monitoring stations. Columns 2 and 5 control for the cumulative 
monthly precipitation within a 1,000-meter radius of the station. In columns 3 and 6, we delete data 
from certain months for some monitoring stations to ensure that the monitoring frequency for these 
stations remains consistent over the years. For example, if a monitoring station reports data in 
January, March, May, July, September, and November before the policy, the data from February, 
April, June, August, October, and December after the policy is excluded. 
(4) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 6. Impact of the Plan on Housing Prices 
  (1) (2) (3) (4) (5) 

Variable Ln(housing price) 

           

Treat × Post 0.033** 0.032** 0.033** 0.030** 0.035*** 

 (0.015) (0.014) (0.014) (0.015) (0.013) 

Ln(housing area)  -0.131*** -0.135*** -0.244*** -0.243*** 

  (0.009) (0.009) (0.011) (0.011) 

Having a south-facing window   0.061*** 0.062*** 0.061*** 

   (0.006) (0.005) (0.005) 

Having a river-facing window   0.003 0.000 -0.000 

   (0.002) (0.002) (0.002) 

Number of building floors/100   0.008 0.019 0.019 

   (0.047) (0.034) (0.035) 

      

Observations 120,482 120,482 120,482 120,482 120,482 

R-squared 0.923 0.928 0.929 0.934 0.936 

Other housing characteristics NO NO NO YES YES 

Other controls NO NO NO NO YES 

Year-month FE YES YES YES YES YES 

Complex FE YES YES YES YES YES 

Mean of dept. var. 10.59 10.59 10.59 10.59 10.59 

Note: (1) Other housing characteristics include a set of fixed effects for whether the apartment is 
located on the highest 1/3, middle 1/3, or lowest 1/3 floors or in the basement, number of bedrooms, 
number of living rooms, number of kitchens, number of bathrooms, and type of apartment usage. 
(2) Other controls include the interaction of the average water quality of other stations within 5,000 
meters around the corresponding monitoring station in 2014 and Post, the interaction of a dummy 
variable indicating whether there are any stations within 5,000 meters of the corresponding 
monitoring station and Post, the interaction of the corresponding river dummies and month dummies, 
the interactions of the corresponding monitoring station’s nightlight intensity dummy variables and 
Post, and the interactions of distances to the employment centers and residential areas and Post. The 
corresponding monitoring station is the station assigned to the apartment used to determine the 
treatment status. 
(3) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 7. Robustness Checks for the Impact of the Plan on Housing Prices 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Variable Ln(housing price) 
Ln(total 

housing value) 

           

Treat × Post 0.035*** 0.035** 0.035*** 0.022* 0.036** 0.035** 0.033** 0.036** 

 (0.012) (0.014) (0.013) (0.012) (0.014) (0.016) (0.014) (0.014) 

         
Observations 120,468 120,079 120,482 120,482 119,453 98,972 140,522 120,433 

R-squared 0.936 0.936 0.936 0.935 0.935 0.936 0.935 0.969 

Housing 

characteristics 
YES YES YES YES YES YES YES YES 

Other controls YES YES YES YES YES YES YES YES 

Year-month FE YES YES YES YES YES YES YES YES 

Complex FE YES YES YES YES YES YES YES YES 

Mean of dept. 

var. 10.59 10.59 10.59 10.59 10.59 10.58 10.59 5.656 

Note: (1) Column 1 controls for monthly average PM2.5 levels within the 1,000-meter 
neighborhood around water monitoring stations. Column 2 controls for the cumulative monthly 
precipitation within a 1,000-meter radius of the station. Column 3 controls for the number of subway 
stations within a 2-kilometer radius of the apartment at the time of the transaction. Column 4 uses 
information from two monitoring stations positioned upstream and downstream of the nearest river 
to derive the treatment status for a particular apartment. Column 5 excludes apartments constructed 
after the plan’s implementation. Column 6 focuses on apartments located within 400 meters of the 
nearest river. Column 7 focuses on apartments located within 600 meters of the nearest river. 
Column 8 uses the total housing value as the outcome variable. 
(2) Housing characteristics include housing area, a dummy for having a south-facing window, a 
dummy for having a river-facing window, and the number of building floors. In addition, they 
include a set of fixed effects for whether the apartment is located on the highest 1/3, middle 1/3, or 
lowest 1/3 floors or in the basement, number of bedrooms, number of living rooms, number of 
kitchens, number of bathrooms, and type of apartment usage. 
(3) Other controls include the interaction of the average water quality of other stations within 5,000 
meters around the corresponding monitoring station in 2014 and Post, the interaction of a dummy 
variable indicating whether there are any stations within 5,000 meters of the corresponding 
monitoring station and Post, the interaction of the corresponding river dummies and month dummies, 
the interactions of the corresponding monitoring station’s nightlight intensity dummy variables and 
Post, and the interactions of distances to the employment centers and residential areas and Post. The 
corresponding monitoring station is the station assigned to the apartment used to determine the 
treatment status. 
(4) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 8. Impact of the Plan on the Number of Visits per Day 
  (1) (2) 

Variable Number of visits per day 

      

Treat × Post 0.068** 0.094** 

 (0.027) (0.040) 

   
Observations 120,103 88,976 

R-squared 0.274 0.230 

Housing characteristics YES YES 

Other controls YES YES 

Year-month FE YES YES 

Complex FE YES YES 

Mean of dept. var. 0.300 0.405 

Note: (1) We use the number of potential buyers’ visits per day to each apartment during the period 
between the listing day and the sale day as a proxy for the demand for apartments. Column 1 uses 
the whole sample, while Column 2 excludes apartments listed before the policy implementation and 
sold after. 
(2) Housing characteristics and Other controls are the same as the definitions in Table 7. 
(3) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 9. Impact of the Plan on the Number of Transacted Apartments 
  (1) (2) 

Variable Proportion of transaction volume Volume of transactions 

      

Treat × Post -0.000 -0.286 

 (0.000) (0.610) 

   
Observations 49,646 49,698 

R-squared 0.246 0.602 

Other controls YES YES 

Year FE YES YES 

Complex FE YES YES 

Mean of dept. var. 0.00409 2.682 

Note: (1) All variables are at the yearly complex level. The outcome variable of Column 1 is the 
proportion of apartments sold to the total number of apartments in the complex each year. The 
outcome variable of Column 2 is the number of sold apartments in each complex each year. 
(2) Other controls include the interaction of the average water quality of other stations within 5,000 
meters around the corresponding monitoring station in 2014 and Post, the interaction of a dummy 
variable indicating whether there are any stations within 5,000 meters of the corresponding 
monitoring station and Post, the interactions of the corresponding monitoring station’s nightlight 
intensity dummy variables and Post, and the interactions of distances to the employment centers 
and residential areas and Post. The corresponding monitoring station is the station assigned to the 
apartment used to determine the treatment status. 
(3) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 10. Impact of the Plan on the Characteristics of Transacted Apartments 
  (1) (2) (3) (4) (5) (6) (7) 

Variable 
Ln(housing 

area) 

Having a 

south-facing 

window 

Having a 

river-facing 

window 

Highest 

floors 

Middle 

floors 

Lowest 

floors 

Number of 

bedrooms 

                

Treat × Post -0.003 -0.010 -0.023** 0.003 0.008 -0.009 0.023*** 

 (0.004) (0.007) (0.010) (0.015) (0.018) (0.015) (0.009) 

        
Observations 120,482 120,482 120,482 120,482 120,482 120,482 120,482 

R-squared 0.932 0.334 0.803 0.092 0.079 0.092 0.817 

Housing 

characteristics YES YES YES YES YES YES YES 

Other controls YES YES YES YES YES YES YES 

Year/month FE YES YES YES YES YES YES YES 

Complex FE YES YES YES YES YES YES YES 

Mean of dept. 

var. 
4.282 0.963 0.669 0.367 0.349 0.283 2.003 

  (8) (9) (10) (11) (12) (13)   

Variable 
Number of 

living rooms 

Number of 

kitchens 

Number of 

bathrooms Villa 

Regular 

dwelling 

Commercial 

property  
               
Treat × Post 0.000 -0.002 -0.007 0.000 0.000 -0.000  

 (0.010) (0.005) (0.009) (0.001) (0.001) (0.000)  
        
Observations 120,482 120,482 120,482 120,482 120,482 120,482  
R-squared 0.672 0.088 0.740 0.908 0.936 0.954  
Housing 

characteristics YES YES YES YES YES YES  
Other controls YES YES YES YES YES YES  
Year/month FE YES YES YES YES YES YES  
Complex FE YES YES YES YES YES YES  
Mean of dept. 

var. 
1.364 0.974 1.183 0.0111 0.972 0.0169 

 
Note: (1) Housing characteristics and Other controls are the same as the definitions in Table 7. The 
only difference is that when the outcome variable is a certain characteristic, the Housing 
characteristics in that column no longer include that characteristic. 
(2) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Table 11. Heterogeneous Effect of the Plan on Housing Prices 
  (1) 

Variable Ln(housing price) 

   
Treat × Post × High 0.043** 

 (0.020) 

Treat × Post -0.000 

 (0.010) 

Post × High -0.072*** 

 (0.019) 

  
Observations 100,481 

R-squared 0.929 

Housing characteristics YES 

Other controls YES 

Year-month FE YES 

Complex FE YES 

Mean of dept. var. 10.62 

Note: (1) Housing characteristics and Other controls are the same as the definitions in Table 7. 
High is a dummy variable indicating whether the complex in which the apartment is located had 
housing prices exceeding the median before the plan. 
(2) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Appendix A 
 
Figure A1. Representativeness of Lianjia Data 

 

 
Note: We calculated the per square meter prices of second-hand housing per month from Lianjia, 
which is the red solid line shown in Panel A. Since the Price Index published by the National Bureau 
of Statistics is a monthly price index whereby the previous month’s price is set at 100, we used 
Lianjia’s per square meter prices in January 2014 as the baseline. We multiplied this baseline price 
by the Price Index to calculate the housing price, which is the blue dashed line shown in Panel A. 
We also calculated the log of second-hand housing transaction area per year from Lianjia (the red 
solid line shown in Panel B) and compared them with the corresponding statistics from the Shanghai 
Statistical Yearbook (the blue dashed line shown in Panel B). 
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Figure A2. Impact of the Plan on Apartments at Different Distances from the Rivers 

 
Note: We estimate Equation (3) using apartments located within areas between 0-500 meters, 500-
1,000 meters, 1,000-1,5000 meters, 1,500-2,000 meters, and 2,000-2,500 meters around the nearest 
river. The coefficients and 95% confidence intervals of the interaction term Treat × Post for each 
sample are shown in the above figure. 
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Table A1. Shanghai Plan and Detailed Measures 
Shanghai plan Detailed measures 

Guarantee the safety of potable 

water.  

Develop and oversee water sources; Mitigate environmental risks associated 

with water sources; Enhance the quality of drinking water. 

Enhance water environmental 

infrastructure. 

Enhance urban sewage and sludge treatment capacity; Establish sewage 

collection networks; Build municipal pollution control infrastructure; 

Develop sponge cities. 

Address agricultural and rural 

pollution. 

Prevent and mitigate pollution stemming from animal husbandry and 

nonpoint source pollution in agriculture; Enhance rural environmental 

management. 

Optimize industrial structure 

and spatial arrangement. 

Refine industrial structure; Optimize the spatial layout of industries; Bolster 

efforts to prevent and control water pollution in industrial agglomeration 

zones. 

Prevent and control pollution in 

rivers, lakes, coastal areas, and 

groundwater. 

Implement comprehensive river management; Advance the ecological 

preservation of rivers and lakes; Intensify efforts to prevent and control 

pollution in coastal waters, ships, ports, and groundwater. 

Enhance innovation in the 

comprehensive management 

system. 

Institute a responsibility assessment system; Reinforce the water ecological 

space control system and the total pollutant control system; Implement 

rigorous water resource management; Enhance information disclosure and 

social oversight mechanisms. 

Enhance the capacity for water 

environment supervision. 

Monitor drinking water sources, groundwater, surface water bodies, marine 

environments, and pollution sources; Establish a water environment 

information-sharing mechanism 

Enhance legal pollution control 

measures. 

Enhance environmental legal standards; Bolster environmental oversight and 

law enforcement; Implement a system for managing pollutant source 

discharge permits. 

Boost scientific and 

technological support. 

Enhance technological research; Expedite the adoption of new technologies; 

Reinforce research on environmental standards. 

Promote innovative and diverse 

investment mechanisms. 

Promote and guide the involvement of private sector investment; Augment 

government capital expenditure. 
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Table A2. Impact of the Plan on Water Pollution Components 
  (1) (2) (3) (4) (5) (6) 

Variable Type VI water NDO COD BOD5 PI TP 
             

Treat × Post -0.365*** -0.711*** -1.608*** -0.387** -0.635*** -0.109*** 

 (0.026) (0.143) (0.350) (0.164) (0.122) (0.012) 

       
Observations 18,701 18,701 18,644 18,631 18,701 18,689 

R-squared 0.542 0.745 0.493 0.481 0.536 0.526 

Other controls YES YES YES YES YES YES 

Year/month FE YES YES YES YES YES YES 

Station FE YES YES YES YES YES YES 

Mean of dept. var. 0.244 -5.264 16.84 3.753 4.587 0.229 

 (7) (8) (9) (10) (11) (12) 

Variable NH3-N TN Cu Zn Fluoride Se 
             

Treat × Post -1.113*** -1.367*** -11.119 -9.416 -746.034 1.902 

 (0.113) (0.158) (8.653) (38.036) (505.764) (1.340) 

       
Observations 18,701 18,219 10,501 10,498 10,265 10,052 

R-squared 0.661 0.685 0.332 0.374 0.750 0.600 

Other controls YES YES YES YES YES YES 

Year/month FE YES YES YES YES YES YES 

Station FE YES YES YES YES YES YES 

Mean of dept. var. 1.285 3.495 44.83 135.9 4358 3.187 

 (13) (14) (15) (16) (17) (18) 

Variable As Hg Cd Cr Pb Cyanide 
             

Treat × Post 2.401 0.056 -0.566* 2.974 -5.043* -4.716* 

 (2.809) (0.065) (0.301) (2.648) (2.947) (2.802) 

       
Observations 10,266 10,077 10,075 10,048 10,286 10,043 

R-squared 0.678 0.398 0.358 0.564 0.452 0.512 

Other controls YES YES YES YES YES YES 

Year/month FE YES YES YES YES YES YES 

Station FE YES YES YES YES YES YES 

Mean of dept. var. 22.05 0.195 0.458 20.62 5.862 18.81 

 (19) (20) (21) (22) (23)  
Variable VP Petroleum AS Sulfide FC  
            
Treat × Post -1.655 -199.511* -8.670 -10.272 -45.984**  

 (2.562) (110.432) (70.820) (19.828) (23.203)  
       
Observations 17,965 18,048 10,045 10,172 9,510  
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R-squared 0.266 0.575 0.487 0.334 0.312  
Other controls YES YES YES YES YES  
Year/month FE YES YES YES YES YES  
Station FE YES YES YES YES YES  
Mean of dept. var. 12.34 360.7 352.4 44.05 14.86  

Note: (1) Treat, Post and Other controls are the same as the definitions in Table 4. 
(2) Type VI water in Column 1 is a dummy variable with one denoting type VI water and 0 otherwise. 
The outcome variables in columns 2-23 are negative values of dissolved oxygen (NDO), chemical 
oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), permanganate index (PI), total 
phosphorus (TP), ammonia nitrogen (NH3-N), total nitrogen (TN), copper (Cu), zinc (Zn), fluoride 
(Fluoride), selenium (Se), arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), 
cyanide (Cyanide), volatile phenol (VP), petroleum (Petroleum), anionic surfactant (AS), sulfide 
(Sulfide), and fecal coliform colony (FC). The units for NDO, COD, BOD5, PI, and TP are mg/L. 
The units for NH3-N, TN, Cu, Zn, fluoride, Se, As, Hg, Cd, Cr, Pb, cyanide, VP, petroleum, AS, and 
sulfide are 10-4 mg/L. The unit for FC is 104 units/L. For all these variables, higher values denote 
more severe pollution. 
(3) Standard errors in parentheses are calculated by clustering over rivers. *, **, and *** denote 
statistical significance at 10%, 5%, and 1%, respectively. 
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Appendix B 

In our paper, we also use other variables, including the average nighttime light 

intensity within a 1-km radius of the monitoring station in 2014, the distance between 

the monitoring station and the city’s employment centers, the distance between the 

monitoring station and the city’s major residential areas, the number of nearby 

restaurants, hotels, places for entertainment, convenience stores, shopping malls, 

various schools (including primary schools, middle schools and universities) and parks 

within a 1-km radius of the monitoring station in 2014, monthly average PM2.5 levels 

within a 1-km radius of the monitoring station, and the cumulative monthly 

precipitation within a 1-km radius of the monitoring station. Below, we discuss some 

relevant details of the data source and variable construction. 

The average nighttime light intensity. We obtained annual nighttime light intensity 

data (Annual VNL V2) from the Earth Observation Group of NOAA (National Oceanic 

and Atmospheric Administration), where scientists processed Visible Infrared Imaging 

Radiometer Suite (VIIRS) data to screen out ephemeral sources of light, such as aurora, 

fires and gas flares, and to mask background (nonlight) noise (Elvidge et al., 2021; 

Gibson et al., 2021). We calculate the average nighttime light intensity within a 1-km 

radius of the monitoring station in 2014, which is the radiance value in units of nano 

Watts per square cm per steradian (nanoWatt/cm2/sr). 

The number of nearby restaurants, hotels, places for entertainment, convenience 

stores, shopping malls, various schools (including primary schools, middle schools and 

universities) and parks. We obtained location information of interest from Baidu Map 

(a Chinese version of Google Maps) in Shanghai in 2014. For each category, restaurants, 

hotels, places for entertainment (e.g., karaoke parlors (KTVs), board game clubs, 

gymnasiums and game centers), convenience stores, shopping malls, various schools 

(including primary schools, middle schools and universities) and parks, we count the 

number of businesses within a 1-km radius of the monitoring station. 

PM2.5. We measured the monthly average PM2.5 levels in the area within the 1-

km neighborhood around each monitoring station between 2014 and 2021. The monthly 

PM2.5 data are from the China High Air Pollutants (CHAP) dataset in units of μg/m3. 
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These data are generated from big data (e.g., ground-based measurements, satellite 

remote sensing products, atmospheric reanalysis, and model simulations) using 

artificial intelligence by considering the spatiotemporal heterogeneity of air pollution 

(Wei et al., 2021). 

Precipitation. The precipitation data are from the National Science and Technology 

Infrastructure Platform - National Earth System Science Data Center, in units of 0.1 

mm (Peng et al., 2019). We aggregate the monthly precipitation within a 1-km radius 

of the monitoring station. 

The distance between the monitoring station and the city’s employment centers and 

the distance between the monitoring station and the city’s major residential areas. We 

use public transportation card data from April 1, 2015, to April 30, 2015, in Shanghai. 

We use data from weekday morning peak hours to identify the top 16 subway stations 

in Shanghai with the highest passenger exit volume and the top 19 stations with the 

highest passenger entry volume. We designate the top 16 stations with the highest 

passenger exit volume as the employment centers of Shanghai and the top 19 stations 

with the highest passenger entry volume as the major residential areas in Shanghai. We 

calculate the respective shortest distances between each monitoring station and the 16 

subway stations in the employment centers, as well as the 19 stations in the residential 

areas. These distances are defined as “the distance between the monitoring station and 

the employment centers” and “the distance between the monitoring station and the 

major residential areas”. The data source is the 2015 “Youzu Cup” Shanghai Open Data 

Innovation Application Competition, and more information about the data can be found 

at https://zhuanlan.zhihu.com/p/540392168. 
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