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Cobb-Douglas Technology Choice*

Bo Zhang�

Abstract. This paper studies how technology choice shapes aggregate production
and structural transformation. We develop a general equilibrium framework in which
all feasible technologies are Cobb�Douglas but di�er in productivity and capital share.
We show that the aggregate production function emerges as the envelope of �rm-level
choices, that any equilibrium can be represented with at most two technologies, and
that equilibria may feature single-technology adoption, multi-technology mixtures, or
non-existence depending on endowments and the technology set. In a multi-sector
extension, development generates a predictable sequence of industry upgrading, with
sectors shifting from labor-intensive to capital-intensive techniques along sharp phase
boundaries. The framework provides a tractable foundation for linking micro-level
technology menus to macroeconomic dynamics and o�ers new insights into the theory
of structural change and long-run growth.

Keywords: Technology choice; Cobb�Douglas; aggregate production function; fac-
tor endowments; general equilibrium.

1 Introduction

Technological change has been a central theme throughout economic history, and mod-
ern economies confront a rich menu of feasible technologies. At the micro level, �rms
select among technologies to minimize costs or maximize pro�ts; at the macro level,
such choices aggregate into economy-wide production possibilities that shape relative
prices, the distribution of income between factors, and the trajectory of structural
transformation. Understanding which technologies are chosen in equilibrium, and how

those choices depend on factor endowments and preferences, is thus fundamental for
both positive and normative macroeconomics.
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General equilibrium analysis can present panoramic view over the whole economy,
and reveal the links between di�erent factors. We now turn to discuss the issue of
technology choice in general equilibrium framework. In the sequel, we only consider
the Cobb-Douglas case.

This paper analyzes technology choice in general equilibrium under the maintained
assumption that all feasible technologies are Cobb�Douglas (CD) with potentially dif-
ferent capital shares and TFP levels. Formally, we allow �rms to choose from a set
F = {A(α)KαL1−α : α ∈ Ω}, with A(α) > 0 and Ω ⊂ [0, 1]. The central questions
are: (i) when does an aggregate production function exist as the envelope of �rm-level
choices, and when is it actually realized by a �nite mixture of local technologies; (ii)
how does the equilibrium technology (or mixture) vary with the economy's endowment
ratio K/L; and (iii) in multi-sector economies, what governs the order and timing of
industry-level upgrading?

Our approach proceeds in three steps. First, using a general representation of
technology via transformation sets, we show that optimal technology choice in general
equilibrium may be independent of factor endowments when the e�ective aggregate
technology is already pinned down by primitives. Second, when technology is rep-
resented by production functions, we characterize global and aggregate production
functions with convex-analytic tools, identifying when the aggregate coincides with the
pointwise maximum of local technologies and when it becomes a linear segment spanned
by a joint tangent. Third, by specializing to the CD family with variable A(α) and α,
we obtain sharp, largely closed-form characterizations of equilibrium technology choice
in both one-sector and multi-sector settings. A key insight is that�depending on the
shape of b(α) = ln[A(α)αα(1−α)1−α]�equilibria with interior or extreme technologies
arise naturally, multi-technology mixtures occur only on well-de�ned endowment inter-
vals, and non-existence is linked to failures of realizability when the optimal envelope
cannot be attained.

Our main contributions are threefold. (i) With CD local technologies, the realized
aggregate production can always be represented with at most two local technologies at
any factor mix, implying that multi-technology equilibria occur only on endowment sets
where envelope kinks bind. (ii) The slope and curvature of b(α) determine whether the
optimal α lies in the interior (strict concavity), at extremes (convexity), or on two-point
mixtures (joint tangencies). (iii) In multi-sector economies, as K/L rises, industries
upgrade sequentially from low-α to high-α technologies, with clear phase boundaries
determined by primitives (Ai,Ωi, θi).

The remainder of the paper is organized as follows. Section 2 presents a structured
review of the literature. Section 3 formalizes the general technology-choice problem and
develops properties of global and aggregate production functions. Section 4 embeds the
analysis in general equilibrium and states equilibrium characterizations. Sections 5 and
6 analyze one-sector and multi-sector CD economies, including sequential upgrading
and conditions for (non-)existence. Section 7 extends the framework to a dynamic
setting. Section 8 concludes.

Beyond its technical contributions, the framework develops a tractable method for
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characterizing aggregate technologies from micro-level menus, o�ering a new founda-
tion for the theory of technology choice in general equilibrium. It provides a uni�ed
theoretical lens through which technology choice, factor endowments, and structural
transformation can be understood, extending the core foundations of growth and gen-
eral equilibrium theory.

2 Literature review

The study of technology choice has undergone a long and evolving trajectory since
the 1960s, when the debate over �appropriate technology� �rst emerged. Early dis-
cussions emphasized the idea that technologies developed in advanced economies may
not be suitable for developing countries with very di�erent factor endowments, wage
structures, and institutional settings.

Schumacher's notion of intermediate technology [30] and Ahmed's re�ections on
development-oriented technological choice [8] stressed that adoption is constrained not
only by technical feasibility but also by costs, skills, and the surrounding social environ-
ment. This line of thought shaped development practice for decades and emphasized
the mismatch between frontier technologies and local needs. At the same time, eco-
nomic theorists began to formalize the idea of induced innovation. Kennedy argued
that the bias of technological progress is endogenously shaped by relative factor prices
[24], while Drandakis and Phelps developed a formal model linking induced invention
to growth dynamics and income distribution [13].

These early contributions were crucial in shifting the perception of technology from
being an exogenous driver of growth to being a choice variable shaped by economic
incentives. However, they largely remained at the level of conceptual arguments or
partial-equilibrium analysis, and did not yet provide a consistent general equilibrium
framework in which technology adoption, growth, and distribution could be analyzed
together.

From the 1990s onward, appropriate technology became a central theme in modern
growth and development economics. Basu and Weil showed that countries far from the
world technology frontier tend to adopt techniques suited to their relative scarcities,
and that such mismatches can explain persistent cross-country di�erences in produc-
tivity and income levels [10]. Hall and Jones documented large international di�erences
in output per worker and argued that institutional and technological factors were key
determinants [21]. Caselli and Coleman constructed formal models of the world tech-
nology frontier, showing how the menu of techniques available to di�erent countries
depends on their endowments and shapes their long-run growth paths [11].

Recently, Leon-Ledesma and Satchi incorporated appropriate technology into a
balanced growth setting, ensuring compatibility between endowment-driven adoption
and steady-state dynamics [27]. These studies o�ered a rich view of how adoption
interacts with development. Yet their main limitation lies in the treatment of the
technology set as largely exogenous: while they showed how endowments select among
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technologies, they did not explain how the shape of the aggregate production function
emerges from the combination of micro-level menus.

A parallel stream of research advanced the theory of directed technical change. Ace-
moglu developed a series of seminal contributions showing that innovation is directed
toward relatively abundant or expensive factors, and that institutional or policy vari-
ables can alter the bias of technological progress [1�7]. This framework explained why
some economies experience capital-biased innovation while others experience labor-
saving progress, and it illuminated the links between innovation incentives, income
distribution, and growth. The directed technical change literature also expanded into
areas such as environmental policy, where the direction of innovation is critical for the
transition to clean technologies [6].

Empirical and theoretical studies, including Jones' analysis of the conditions under
which aggregate production functions approximate CES [22], and Growiec's contribu-
tions on factor-augmenting progress and variable factor shares [14�20], deepened our
understanding of how micro-level changes in technology map into aggregate regulari-
ties. This strand is highly in�uential, but its main limitation is its narrow focus on the
innovation margin. While it powerfully explains the incentives to innovate in particular
directions, it pays less attention to the adoption and selection of existing technologies,
which is often more relevant in contexts where innovation is slow or external but adop-
tion is pervasive.

In parallel, another body of work focused on factor-augmenting technical change
and the behavior of factor shares. A long-standing empirical regularity is the approxi-
mate stability of the labor share over long horizons, a fact historically consistent with
Cobb�Douglas production.

Yet more recent evidence indicates that labor shares are neither constant nor uni-
form across countries, industries, or time periods. Studies such as Growiec's micro-
foundations for CES functions [17], his exploration of factor-speci�c technology choice
[18], and the joint work with Groth and McAdam on labor share cycles [19], empha-
sized the importance of explicitly modeling the choice of factor-augmenting techniques.
Meta-analyses, such as Knoblach and Stöckl's review of substitution elasticities [25],
provide empirical bounds for theoretical assumptions and highlight the heterogeneity
across settings. This strand has the advantage of being closer to empirical regularities
but often faces the limitation of requiring complex functional forms, which can obscure
the transparency of the mechanisms at work.

In more recent years, the scope of technology choice has expanded beyond simple
factor bias to include networks, supply chains, and other systemic interconnections.
Acemoglu and Azar highlighted that �rms' interconnections in production networks
fundamentally shape the propagation of technology shocks and aggregate �uctuations
[7]. Kopytov and coauthors extended this idea by incorporating supply chain uncer-
tainty into models of endogenous production networks [26]. These studies illustrate
that technology adoption is embedded not only in sectoral decisions but also in the
architecture of inter�rm linkages. This network perspective greatly enriches our under-
standing of aggregate dynamics but also comes with limitations: the resulting models
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are often highly complex, and the link to benchmark functional forms used in applied
macroeconomics (such as Cobb�Douglas or CES) is less direct, making it harder to
draw transparent policy implications.

Taken together, the literature shows a rich progression: from early concerns about
appropriate technology and induced innovation, through models of frontier adoption
and directed technical change, to contemporary perspectives on factor-augmenting
choices, elasticities of substitution, and network propagation. Each stage added depth
to our understanding, yet each left gaps: early work lacked general equilibrium rigor,
later development models treated technology sets as exogenous, directed technical
change overemphasized innovation while underplaying adoption, and network models
o�ered complexity at the cost of tractability.

Against this background, the present paper focuses speci�cally on Cobb�Douglas
(CD) technologies. The reason is twofold. First, CD remains analytically tractable and
historically central: it provides a benchmark case where factor shares are constant, yet
the aggregation of multiple CD techniques can generate non-trivial dynamics of shares,
substitution, and structural change. Second, studying technology choice within the CD
class clari�es the extent to which empirical regularities attributed to �Cobb�Douglas
production� may in fact arise from an envelope of heterogeneous Leontief technologies
selected according to endowments.

In this sense, the CD framework is not only a convenient simpli�cation but also
an economically meaningful laboratory for understanding how micro-level technology
menus translate into aggregate outcomes. By addressing the limitations of earlier
strands�whether their neglect of general equilibrium, their exclusive focus on inno-
vation, or their abstraction from tractable forms�this paper positions CD technology
choice as a natural and insightful focal point for advancing the theory of technology
selection in macroeconomics.

3 General setup

Consider an economy with one representative individual and n industries, each with one
representative �rm. In any industry-i, the �rm is allowed to take multiple technologies
freely from a set of available technologies:

Fi =
{
F

(α)
i |α ∈ Ωi

}
,

where Ωi ⊂ [0, 1], and

F
(α)
i (K,L) = Ai(α)K

αL1−α,

and Ai is a positive function, K,L are inputs of capital and labor, respectively. Denote
the aggregate production function in sector i as Fi.

The representative individual has initial endowments of capital K0 > 0 and labor
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L0 > 0, (let k0 := K0/L0), and his utility function is

U(C1, C2, ..., Cn) =
n∏

i=1

Cθi
i ,

where Ci is the consumption good-i, and θ1, ..., θn ∈ (0, 1) are constants, satisfying∑n
i=1 θi = 1.
For simplicity, in the sequel, in any case, we use β to replace 1 − α, γ to replace

α/β, and with the same subscript and superscript as α.
Given the price system (r, ω, p1, ..., pn), where r, ω, pi are the prices of capital, labor

and the consumption good i, respectively. The �rm-i's problem (Pi) is
1

max
(αij ,Kij ,Lij)j=1,2

{
pi

2∑
j=1

Ai(αij)K
αij

ij L
βij

ij − r
2∑

j=1

Kij − ω
2∑

j=1

Lij

}
,

s.t. αij ∈ Ωi, Kij ≥ 0, Lij ≥ 0, ∀i, j,

and the individual's problem (P) is

max
(C1,...,Cn)

U(C1, ..., Cn)

s.t.
n∑

i=1

piCi ≤ rK0 + ωL0,

De�nition 1. A nonnegative vector
(
r, ω, pi, α

∗
ij, C

∗
i , K

∗
ij, L

∗
ij

)
i=1,...,n,j=1,2

is called

an equilibrium, if for any i, (α∗
ij, K

∗
ij, L

∗
ij)j=1,2 solves (Pi), and (C∗

1 , ..., C
∗
n) solves (P),

and

C∗
i =

2∑
j=1

Ai(α
∗
ij)
(
K∗

ij

)α∗
ij
(
L∗
ij

)β∗
ij , ∀i,

n∑
i=1

2∑
j=1

K∗
ij = K0,

n∑
i=1

2∑
j=1

L∗
ij = L0.

For simplicity, due to the clearing condition for all the consumption goods markets,
to express an equilibrium, we can omit writing out the C∗

i . And, if in any sector-i,
only one technology is chosen, then we denote (αij, Kij, Lij)j=1,2 simply as (αi, Ki, Li).

De�nition 2. We say that two equilibria (r, ω, pi, Ci, αij, Kij, Lij)i=1,...,n,j=1,2 and(
r, ω, pi, Ci, α

′
ij, K

′
ij, L

′
ij

)
i=1,...,n,j=1,2

are equivalent, if for any i,∑
j

Kij =
∑
j

K ′
ij,

∑
j

Lij =
∑
j

L′
ij.

1By Theorem 1 in Appendix B, any �rm takes at most two technologies simultaneously.
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The equivalence means that the total output in each sector is the same, although the
concrete technologies and the factor allocation within one sector are di�erent.

For this economy, the social planner's problem is

max U(C1, ..., Cn),

s.t. Ci =
2∑

j=1

Ai(αij)K
αij

ij L
βij

ij , ∀i,∑
ij

Kij = K0,
∑
i,j

Lij = L0,

αij ∈ Ωi, ∀i, j.

It's easy to see that for this economy, the �rst and second theorems of welfare economics
hold. And hence, the equilibrium problem is equivalent to the social planner's problem
(except for the price system), which is equivalent to identifying the realization of the
aggregate production functions (F1, ..., Fn).

De�ne Bi(α) := Ai(α)α
αββ, ai(α) := lnAi(α), bi(α) := lnBi(α), and for any

x > 0,
Λi(x) := argmax

α∈Ωi

{bi(α)− α lnx}.

One can easily prove the following basic result on the equilibrium.

Lemma. (r, ω, pi, αij, Kij, Lij)i=1,...,n,j=1,2 is an equilibrium, if and only if

γijLij

Kij

= x,
r

pi
= Bi(αij)x

βij , ∀i, j;

αij ∈ Λi(x), ∀i, j;

x
∑
j

Kij +
∑
j

Lij = θi(xK0 + L0), ∀i;

K0 =
∑
ij

Kij, L0 =
∑
ij

Lij,

where x = r/ω.

From this lemma, we can obtain following corollaries immediately.

Corollary 1. The equilibrium exists and is unique and is with one technology, if
and only if Λi(x) = {αi}, ∀i, where

x =

∑
i θiαi

k0
∑

i θiβi

.

Corollary 2. If for any i, Ωi is some interval in [0, 1], and bi is smooth and
strictly concave. Then, the equilibrium exists and is unique and with one technology,
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and these technologies are all interior, if and only if the equations for (x, α1, ..., αn),
x > 0, αi ∈ Ωi, i = 1, ..., n:{

xk0 =
∑

i θiαi/
∑

i θiβi,
a′i(αi) + ln γi = lnx, ∀i = 1, ..., n

has a unique solution and the solution is interior in the sense that for any i = 1, ..., n,
αi is an interior point of Ωi.

Corollary 3. If for any i, Ωi is an closed interval in [0, 1], and bi is convex.
Then, the unique (in the sense of equivalence) equilibrium (in case of existence) is the
equilibrium taking with extreme technologies (maybe multiple), that is, for any i, the
optimal αi's are taken from the end points of Ωi.

We see that the concavity/convexity of bi matters.

We need to emphasize that in the above setting, the Ai(α)'s are given exogenously.
Which kind of Ai(α)'s are suitable? We will discuss several typical types of it.

4 One-sector

Consider an economy stated in section 3 with n = 1. We use the same notations,
except for that we drop the subscript i. Let the price of consumption good be 1.

4.1 The case with countable Ω

Suppose Ω = {αn|n ∈ N}, where {αn}n∈Z is a sequence of strictly increasing numbers
on (0, 1). Here and throughout this paper, N denotes the set of all natural numbers.

De�ne m0 := ∞, and for any n ∈ N,

mn :=
b(αn+1)− b(αn)

αn+1 − αn

,

Mn− := γne
−mn−1 , Mn+ := γne

−mn , M∗ := sup
n∈N

Mn+.

Proposition 1. (i) If b is strictly concave, then, for k0 ∈ (0,M∗), the equilibrium
exists and is unique, more precisely, for k0 ∈ (Mn−,Mn+), the optimal technology
is taking αn; for any k0 ∈ [Mn+,M(n+1)−], the optimal technology is taking αn, αn+1

simultaneously; for k0 ≥ M∗, the equilibrium does not exist.
(ii) If for any K0 > 0, L0 > 0, the equilibrium exists and is unique, and there exists

a sequence of real numbers 0 = M ′
1− < M ′

1+ < ... < M ′
n− < M ′

n+ < ... satisfying
limn→∞ M ′

n+ = ∞ such that for k0 ∈ (M ′
n−,M

′
n+), the optimal technology is taking αn;

for any k0 ∈ [M ′
n+,M

′
(n+1)−], the optimal technology is taking αn, αn+1 simultaneously,

then, b is strictly concave and M ′
n− = Mn−, M

′
n+ = Mn+ for any n ∈ N, and M∗ = ∞.
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Remark 1. When b is strictly concave, Mn+ and M(n+1)− are the two tangent
points of the joint tangent line of the two curves y = A(αn)k

αn and y = A(αn+1)k
αn+1

on the k-y plain.
Remark 2. If M∗ = ∞, then, for any K0 > 0, L0 > 0, the equilibrium exists and

is unique. Along with the increase of k0 from 0 to ∞, the optimal α will go throughout
α1, α2, ... from left to right sequentially.

4.2 The case with Ω = [0, 1]

Since the concavity of b matters, from Corollaries 2 and 3, we can get further corollaries
in this case.

In particular, if b is smooth and strictly concave, then for any K > 0, L > 0,
F (K,L) = F (α)(K,L), where α is determined by a′(α) = ln(L/K).

If b is convex, then, F (K,L) = A(1)K + A(0)L, ∀(K,L) ∈ R2
+.

For more complicated case, one can verify that if a is strictly concave but b is
strictly concave in [0, α0] and strictly convex in [α0, 1], where α0 ∈ (0, 1)2, then, the
equilibrium exists and is unique, and there are k∗ > 0 and α∗ ∈ (0, α0) such that
the optimal technology is taking α ∈ (0, α∗) and 1 simultaneously, the corresponding
allocation of capital is K0 ∧ (k∗L0) and (K0 − (k∗L0))

+, to the technologies α∗ and 1,
respectively, where α is determined by a′(α) = − ln(K0 ∧ (k∗L0).

We now focus on the case, where b is linear, more precisely, A(α) = mα(ααββ)−1

for some constant m > 0. Then,

F (K,L) = A(α1)K
α1
1 Lβ1

1 + A(α2)K
α2
2 Lβ2

2 ,

for any αi, Ki, Li, i = 1, 2 satisfying

K1 +K2 = K, L1 + L2 = L, mki = γi, i = 1, 2.

In other words, the equilibrium exists and is unique in the sense of equivalence class.
Among the equivalence class, two variants are special. One is the mixture of the

two extreme technologies, that is, α = 1 and α = 0, which implies

F (K,L) = mK + L.

The other variant is one interior technology

α∗ =
mK

mK + L
,

which yields
F (K,L) = A(α∗)Kα∗

Lβ∗
.

2One example is a(α) = αε, where ε ∈ (0, 1).
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In addition, for this case, the TFP A(α) is inverted U-shaped in the interval [0, 1]
and obtains its maximum at the point

α =
m

1 +m
,

which is approaching to 1 as m → ∞. So, if m is su�ciently large, then, we see that
in most part of the interval [0, 1], the TFP A(α) is strictly increasing.

To sum up, we get

Proposition 2. If b is linear, the optimal capital share strictly increases from 0 to
1, as the initial capital per capita k0 increases from 0 to ∞.

5 Multi-sector

We discuss two cases separately.

5.1 Interior technology

Suppose that for any i, Ωi = [0, 1], and Ai(α) =
(
ααββ

)−δi , where δi > 1, i = 1, ..., n,
are constants.

For any i,
bi(α) = −(δi − 1) (α lnα + β ln β)

is strictly concave, and hence, the equilibrium is with interior technologies.
More precisely, the equilibrium exits and is unique, in which for any i, the optimal

technology for industry-i is

αi =
1

1 + x1/(δi−1)
,

where x = r/ω, the rental-wage ratio, is determined uniquely by

k0x

n∑
i=1

θi
1 + x1/(1−δi)

=
n∑

i=1

θi
1 + x1/(δi−1)

.

We see that x is strictly decreasing with respect to k0; and hence, for any i, αi is
strictly increasing with respect to k0.

Proposition 3. Along with the increase in k0, each industry experiences technology
upgrading, and the rental-wage ratio decreases continuously.

5.2 Extreme technology

Suppose that for any i, Ωi = [αi, αi], and Ai(α) = mβ
i , where 0 ≤ αi < αi ≤ 1 and

mi > 0 are given constants, here mi is the labor augmenting factor.
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For any i,
bi(α) = β lnmi + α lnα+ β ln β,

is strictly convex, and hence, the equilibrium must be with extreme technologies. That
is, for any industry-i, the optimal technology is either low technology αi; or high
technology αi; or mixed technology, that is, taking low and high technologies simulta-
neously.

For any t ∈ {1, ..., n}, de�ne

τt := exp

{
bt(αt)− bt(αt)

αt − αt

}
,

κ∗
2t−1 :=

∑
j<t θjαj +

∑
j≥t θjαj∑

j<t θjβj ++
∑

j≥t θjβj

τt, κ∗
2t :=

∑
j≤t θjαj +

∑
j>i θjαj∑

j≤t θjβj +
∑

j>t θjβj

τt,

and κ∗
0 := 0, κ∗

2n+1 := ∞.
Assume τ1 ≤ τ2 ≤ ... ≤ τn. Then, κ

∗
0 ≤ κ∗

1 ≤ κ∗
2 ≤ ... ≤ κ∗

2n ≤ κ∗
2n+1.

Proposition 4. The equilibrium exits and is unique.

(i) If k0 ∈ [κ∗
2t, κ

∗
2t+1] for some t, then,

αi = αi, ∀i ≤ t; αi = αi, ∀i > t;

(ii) If k0 ∈ (κ∗
2t−1, κ

∗
2t) for some t, then,

αi = αi, ∀i < t; αt1 = αt, αt2 = αt; αi = αi, ∀i > t.

Remark 3. In general, with the increase in k0, any industry experiences technology
upgrading through three phases, and the upgrading happens one by one sequentially.
The total phases of economic development is at least 2n − 1 (for the case, where
0 = αi < αi = 1 for all i) and at most 2n+ 1 (for the case, where 0 < αi < αi < 1 for
all i).

In addition, Appendix C presents the analytical solution of the equilibrium, from
which we can observe that the capital intensity of each sector increases with the rise
in k0.

Therefore, to summarize, we obtain the following result:

Proposition 5. (Technology Upgrading) As the per capita capital stock of the
economy increases, each industry undergoes three phases of technological upgrading
and becomes progressively more capital-intensive: low technology, mixed technology,
and high technology. The upgrading process occurs sequentially�an industry begins
upgrading only after the preceding one has completed its transformation. Consequently,
the economy as a whole experiences a �nite number of technological upgrading phases.

Remark 4. Analogously, one can show that if each �rm is restricted to adopting
a single technology, then an equilibrium fails to exist whenever κ∗

2t−1 < k0 < κ∗
2t for

some t.

11



6 The dynamic model

All the static models considered above can be extended to a dynamic one in this way: let
all the industries in the static model be industries of intermediate goods, and introduce
a new industry producing the �nal good (the unique consumption good, homogeneous
with capital and hence can be accumulated as capital) by using all the intermediate
goods as inputs through a production function as the individual's utility function in
the static model, and set the individual's life-long utility as∫ ∞

0

e−ρtu(C)dt,

where C is his consumption of the �nal goods, ρ > 0 is his discount rate, and u is his
instant utility function satisfying the usual conditions. In this way, we get a dynamic
model, in which the capital is really strictly increasing in the whole process of economic
development, and hence, the technology upgrading analyzed above can be applied in
this dynamic setting. We omit the detail.

7 Conclusion

This paper develops a general equilibrium framework in which aggregate production
arises from �rms' choice among heterogeneous Cobb�Douglas technologies. We charac-
terize when equilibria select a single technology, mix two technologies, or fail to exist,
and we show that the curvature of the technology frontier governs these outcomes. In
multi-sector settings, rising capital�labor ratios generate sequential industry upgrading
along sharp phase boundaries. The framework provides a tractable foundation for link-
ing micro-level technology menus to macroeconomic dynamics, o�ering new theoretical
insights into structural transformation and long-run growth.

Beyond its theoretical contributions, the analysis also highlights mechanisms with
direct policy relevance: as endowments evolve, economies traverse predictable paths
of industrial upgrading, and policies that expand the feasible technology set or re-
duce adoption costs can accelerate this process. These insights help clarify the role of
technology and industrial policy in shaping long-run development trajectories.
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Appendix A. Transformation function

Technology can be expressed by a transformation function.
The idea "adapted technology" means that for any economy, technology choice

should be adapted to its factor endowment and the people's preference but not its
factor endowment only.

We now construct an example to show that the optimal technology choice may not
depend on the economy's factor endowment.

Example. Consider an economy with one representative individual and one rep-
resentative �rm. Assume that the individual owns physical capital K0 > 0 and labor
L0 > 0, and the �rm produces two consumption goods using capital and labor by
technologies chosen freely from the set of all available technologies:

αx2
1 + βx2

2 ≤ KL,

whereK,L are the inputs of capital and labor, respectively, and x1, x2 are the outputs of
good 1 and good 2, respectively; and α can be chosen in [α1, α2], where 0 < α1 < α2 < 1
are constants, and β = 1− α.
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The individual's utility function is

U(C1, C2) = Cθ1
1 Cθ2

2 ,

where C1, C2 are his consumptions of the good 1 and good 2, respectively, and θ1, θ2 ∈
(0, 1) are constants, satisfying θ1 + θ2 = 1.

It is easy to verify that the equilibrium exists and is unique: the optimal technology
choice is: taking technology α1 only , if σ1 ≤ 1; taking technology α2 only, if σ2 ≤ 1;
taking technologies α1, α2 simultaneously, if σi > 1 for any i = 1, 2, where

σ1 =
α1

α2

θ1 +
β1

β2

θ2, σ2 =
α2

α1

θ1 +
β2

β1

θ2.

Appendix B. Global and Aggregate Production Func-

tions

In general, suppose that in a sector in an economy, the technology can be chosen freely
from a set of available technologies:

F =
{
F (α)|α ∈ Ω

}
,

where Ω is a set in some Euclidian space, and for any α ∈ Ω, F (α) is a function of
factor X ∈ Rn

+, nonnegative, continuous, homogeneous, concave and increasing.
For any N ∈ N, let

FN(X) = sup
(αj ,Xj)j=1,...,N

N∑
j=1

F (αj)(Xj),

s.t. X =
N∑
j=1

Xj,

αj ∈ Ω, ∀j = 1, ..., N,

and
G(X) = F1(X); F (X) = sup

N
FN(X), ∀X ∈ Rn

+.

We call F (α) a local production function for any α ∈ Ω, G global production function,
and F aggregate production function.

The following basic result is a direct consequence of the classical Caratheodory
theorem in convex analysis (See Corollary 17.1.3 in [29]).

Theorem 1. F ≡ Fn.
This theorem means that when the factor is of n-dimension, then, the aggregate

production function can be realized by at most n local production functions at any
concrete factor.
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For a �rm, facing the set of available technologies F , the technology choice for it
is to �nd F and its realization. The �rm always takes F , if it can be realized.

For the global production function, we have the following result. Consider F ={
F (α)|α ∈ Ω

}
, where

Ω =

{
(a1, ..., an) ∈ Rn

+

∣∣∣∣∣
n∏

i=1

aθii = 1

}
,

where θ1, ..., θn are all positive constants satisfying
∑n

i=1 θi = 1; and for any α =
(a1, ..., an) ∈ Ω,

F (α)(X) = Φ(a1X1, ...anXn), ∀X = (X1, ..., Xn) ∈ Rn
+,

where Φ, de�ned on Rn
+, is smooth and satis�es that Φ(x) = 0 for all x, which is not

the interior point of Rn
+, and increasing in the sense that Φ is increasing with respect

to every element.
Then, the global production function is

G(X) = max
α∈Ω

F (α)(X), ∀X ∈ Rn
+.

De�ne a function ϕ on [0,∞):

ϕ(z) = max Φ(x1, ..., xn)

s.t.
n∏

i=1

xθi
i = z.

We have a basic result. The proof is easy, hence, omitted.
Theorem 2.
(i) G(X) exists for any X ∈ Rn

+, if and only if ϕ(z) exists for any z ∈ [0,∞).
(ii) In case of existence, ϕ is increasing, and

G(X1, ..., Xn) = ϕ

(
n∏

i=1

Xθi
i

)
, ∀(X1, ..., Xn) ∈ Rn

+.

Therefore, G is homothetic.
(iii) In case of existence, G is smooth, if and only if ϕ is smooth. And, for any

X > 0,
X1G1

θ1
= ... =

XnGn

θn
,

where Gi =
∂G
∂Xi

, for any i = 1, ..., n.
(iv) If Φ is homogeneous, then, in case of existence, ϕ is homogeneous, and hence,

G is itself Cobb-Douglas, and for any i = 1, ..., n, the share of the capital-i is θi.

Remark 5. If Φ is of CES type: for any (x1, ..., xn) ∈ Rn
+,

Φ(x1, ..., xn) = (θ1x
ρ
1 + ...+ θnx

ρ
n)

1/ρ ,

where ρ < 1, θi > 0, i = 1, ..., n are all constants, then, ϕ(z) exists for any z ≥ 0, if and
only if ρ < 0 (including the case ρ = −∞).
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Appendix C. Proofs

Proof of Proposition 1. We prove (i). First of all, we notice that an equilibrium
with one technology exists, if and only if there exists n ∈ N such that Λ(γn/k0) = {αn},
which is equivalent to

εn > ln
γn
k0

> δn (1)

where for any n ∈ N,

εn = min
j<n

b(αj)− b(αn)

αj − αn

, δn = max
j>n

b(αj)− b(αn)

αj − αn

,

in particular, ε1 = ∞.
Since b is strictly concave, then, (1) is equivalent to

mn−1 > ln
γn
k0

> mn, (2)

where m0 = ∞, and for any n ∈ N,

mn =
b(αn+1)− b(αn)

αn+1 − αn

.

And, further, (2) is equivalent to

Mn− < k0 < Mn+,

where
Mn− = γne

−mn−1 , Mn+ = γne
−mn .

We know

0 = M1− < M1+ < M2− < M2+ < ... < Mn− < Mn+ < M(n+1)− < M(n+1)+ < ...

Denote
M∗ = sup

n∈N
Mn+.

Obviously, M∗ = ∞ if and only if αn → 1 or mn → −∞ as n → ∞.
Now, suppose that there is n ∈ N such that

Mn+ ≤ k0 ≤ M(n+1)− (3)

According the above analysis, there does not exist an equilibrium with one technology.
We turn to the equilibrium with multiple technologies.

Due to the strict concavity of b, it's easy to see that for any x > 0, Λ(x) can not
include more than two elements, and if it contains two elements, say, αi, αj, i < j,
then, it must be the case, where j = i+ 1.
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So, under (3), if there is an equilibrium with two technologies, then, there is x > 0
and i ∈ N such that Λ(x) = {αi, αi+1}, and hence, b(αi)−αi ln x = b(αi+1)−αi+1 ln x,
then, ln x = mi. And, x = γi/ki = γi+1/ki+1; L0 = Li + Li+1, K0 = Ki + Ki+1.
Therefore,

Li =
γi+1 − xk0
γi+1 − γi

L0, Li+1 =
xk0 − γi
γi+1 − γi

L0,

Ki =
γi+1/(xk0)− 1

γi+1/γi − 1
K0, Ki+1 =

1− γi/(xk0)

1− γi/γi+1

K0.

Since all these four variables are nonnegative, then,

Mi+ ≤ k0 ≤ M(i+1)−.

And hence, i = n.
Conversely, under (3), take x = mn, and then, it's easy to verify that Λ(x) =

{αn, αn+1}, and the equilibrium follows.
Thus, we can conclude that under (3), the equilibrium exists and is unique, which

is the equilibrium with technologies n and n+ 1 simultaneously.
For any k0 ≥ M∗, there does not exist equilibrium. In fact, otherwise, there would

exist i ∈ N such that k0 ≤ M(i+1)− < M∗. A contradiction. Therefore, the equilibrium
does not exist.

To sum up, if k0 ∈ (0,M∗), then the equilibrium exists and is unique. Along with
the increase of K0 from 0 to M∗, the optimal α will go throughout α1, α2, ... from left
to right sequentially. If k0 ≥ M∗, then the equilibrium does not exist.

By the way, as to global production function, we have

F (K,L) =

 F (αn)(K,L), if K/L ∈ (Mn−,Mn+),
wn1K + wn2L, if K/L ∈ [Mn+,M(n+1)−],
not exist, if K/L > M∗,

where wn1 = B(αi)e
mnβi , wn2 = B(α2)e

−mnαi for any i = n, n+ 1.
This completes the proof of (i). And (ii) can be proved by the same method, a bit

modi�ed.

Proof of Proposition 4. We only prove the result under the assumption that

0 < αi < αi < 1, ∀i = 1, ..., n.

Other cases can be proved similarly.
Let (r, ω, pi, Cij, αij, Kij, Lij)i=1,...,n,j=1,2 be the equilibrium. We now consider the

following two cases.
The �rst case. There exists some t ∈ {0, 1, ..., n} such that for any i ≤ t, industry-i

takes low technology; for any i > t, industry-i takes high technology, and no industry
takes mixed technology.
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By solving the individual's optimization problem, one can easily get that for any
i ∈ {1, ..., n},

piCi = θi(rK0 + ωL0). (4)

By solving the �rms' optimization problems, one can get that for any i ∈ {1, ..., n},
r

pi
= αig

−βi

i ,
ω

pi
= miβig

αi
i , (5)

where gi = Ki/(miLi), and

αi =

{
αi, i ≤ t,
αi, i > t.

By the market clearing condition, we have

n∑
i=1

Ki = K0,
n∑

i=1

Li = 1. (6)

From (4),(5), we get that for any i, j ∈ {1, ..., n},

θi
θj

=
piCi

pjCj

=
α−1
i Ki

α−1
j Kj

=
β−1
i Li

β−1
j Lj

,

which, combining with (6), gives that for any i ∈ {1, ..., n},

Ki =
θiαi∑n
j=1 θjαj

K0, Li =
θiβi∑n
j=1 θjβj

L0. (7)

From (5)(7), we get that

ω

r
=

∑
j≤t θjβj +

∑
j>t θjβj∑

j≤t θjαj +
∑

j>t θjαj

k0. (8)

And by solving the problems of the �rms, we obtain

(αi

r

)αi

(
β
i

ω/Ai

)β
i

≤
(
αi

r

)αi
(

βi

ω/mi

)βi

, ∀i ≤ t;

(αi

r

)αi

(
β
i

ω/mi

)β
i

≥
(
αi

r

)αi
(

βi

ω/mi

)βi

, ∀i > t.

Therefore,

τt ≤
ω

r
≤ τt+1,

which, combining with (8), yields that

κ∗
2t ≤ k0 ≤ κ∗

2t+1.
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The second case. There exists some t ∈ {0, 1, ..., n} such that for any i < t,
industry-i takes low technology; for any i > t, industry-i takes high technology, and
industry-t takes mixed technology.

By solving the individual's optimization problem, (4) still holds. By solving the
�rms' optimization problem, we obtain that for any i ̸= t,

r

pi
= αig

−βi

i ,
ω

pi
= miβig

αi
i , (9)

where gi = Ki/(miLi), and

αi =

{
αi, i < t,
αi, i > t,

and
r

pt
= αtg

−β
t

t1 = αtg
−βt
t2 ,

ω

pt
= mtβt

g
αt
t1 = mtβtg

αt
t2 , (10)

where gtj = Ktj/(mtLtj). And hence,

ω

r
=

βt

αt

kt2 =
β
t

αt

kt1, βtg
αt
t2 = β

t
g
αt
t1 ,

which yields
ω

r
= τt.

By (4) and (9), we have that for any i ̸= t,

Ki = θiαi(K0 + τtL0), Li = θiβi(K0/τt + L0),

and by (4) and (10), we obtain

Kt1

αt

+
Kt2

αt

= θt(K0 + τtL0),
Lt1

β
t

+
Lt2

βt

= θt(K0/τt + L0).

By the market clearing condition, we have

Kt1 +Kt2 = K0 −
∑
i̸=t

θiαi(K0 + τtL0); Lt1 + Lt2 = 1−
∑
i̸=t

θiβi(K0/τt + L0).

Therefore,

Kt1 =

∑
j≤t θjβj +

∑
j>t θjβj

αt/αt − 1

(
κ∗
2t

k0
− 1

)
K0,

Kt2 =

∑
j<t θjβj +

∑
j≥t θjβj

1− αt/αt

(
1−

κ∗
2t−1

k0

)
K0,

Lt1 =

∑
j≤t θjαj +

∑
j>t θjαj

1− βt/βt

(
1− k0

κ∗
2t

)
L0,
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Lt2 =

∑
j<t θjαj +

∑
j≥t θjαj

β
t
/βt − 1

(
k0

κ∗
2t−1

− 1

)
L0.

And, obviously, in this case,
κ∗
2t−1 ≤ k0 ≤ κ∗

2t.

By the same method, one can prove that any other cases are impossible. The proof
is completed.
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