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1 Introduction

Technological change has been a central theme throughout economic history, and mod-
ern economies confront a rich menu of feasible technologies. At the micro level, firms
select among technologies to minimize costs or maximize profits; at the macro level,
such choices aggregate into economy-wide production possibilities that shape relative
prices, the distribution of income between factors, and the trajectory of structural
transformation. Understanding which technologies are chosen in equilibrium, and how
those choices depend on factor endowments and preferences, is thus fundamental for
both positive and normative macroeconomics.
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General equilibrium analysis can present panoramic view over the whole economy,
and reveal the links between different factors. We now turn to discuss the issue of
technology choice in general equilibrium framework. In the sequel, we only consider
the Cobb-Douglas case.

This paper analyzes technology choice in general equilibrium under the maintained
assumption that all feasible technologies are Cobb-Douglas (CD) with potentially dif-
ferent capital shares and TFP levels. Formally, we allow firms to choose from a set
F = {A(0)K*L'™ : a € Q}, with A(a) > 0 and Q C [0,1]. The central questions
are: (i) when does an aggregate production function exist as the envelope of firm-level
choices, and when is it actually realized by a finite mixture of local technologies; (ii)
how does the equilibrium technology (or mixture) vary with the economy’s endowment
ratio K/L; and (iii) in multi-sector economies, what governs the order and timing of
industry-level upgrading?

Our approach proceeds in three steps. First, using a general representation of
technology via transformation sets, we show that optimal technology choice in general
equilibrium may be independent of factor endowments when the effective aggregate
technology is already pinned down by primitives. Second, when technology is rep-
resented by production functions, we characterize global and aggregate production
functions with convex-analytic tools, identifying when the aggregate coincides with the
pointwise maximum of local technologies and when it becomes a linear segment spanned
by a joint tangent. Third, by specializing to the CD family with variable A(a) and «,
we obtain sharp, largely closed-form characterizations of equilibrium technology choice
in both one-sector and multi-sector settings. A key insight is that—depending on the
shape of b(a) = In[A(a)a®(1 — a)'~*]—equilibria with interior or extreme technologies
arise naturally, multi-technology mixtures occur only on well-defined endowment inter-
vals, and non-existence is linked to failures of realizability when the optimal envelope
cannot be attained.

Our main contributions are threefold. (i) With CD local technologies, the realized
aggregate production can always be represented with at most two local technologies at
any factor mix, implying that multi-technology equilibria occur only on endowment sets
where envelope kinks bind. (ii) The slope and curvature of b(«) determine whether the
optimal « lies in the interior (strict concavity), at extremes (convexity), or on two-point
mixtures (joint tangencies). (iii) In multi-sector economies, as K /L rises, industries
upgrade sequentially from low-a to high-a technologies, with clear phase boundaries
determined by primitives (A;, €2, 6;).

The remainder of the paper is organized as follows. Section 2 presents a structured
review of the literature. Section 3 formalizes the general technology-choice problem and
develops properties of global and aggregate production functions. Section 4 embeds the
analysis in general equilibrium and states equilibrium characterizations. Sections 5 and
6 analyze one-sector and multi-sector CD economies, including sequential upgrading
and conditions for (non-)existence. Section 7 extends the framework to a dynamic
setting. Section 8 concludes.

Beyond its technical contributions, the framework develops a tractable method for



characterizing aggregate technologies from micro-level menus, offering a new founda-
tion for the theory of technology choice in general equilibrium. It provides a unified
theoretical lens through which technology choice, factor endowments, and structural
transformation can be understood, extending the core foundations of growth and gen-
eral equilibrium theory.

2 Literature review

The study of technology choice has undergone a long and evolving trajectory since
the 1960s, when the debate over “appropriate technology” first emerged. Early dis-
cussions emphasized the idea that technologies developed in advanced economies may
not be suitable for developing countries with very different factor endowments, wage
structures, and institutional settings.

Schumacher’s notion of intermediate technology [30] and Ahmed’s reflections on
development-oriented technological choice [8] stressed that adoption is constrained not
only by technical feasibility but also by costs, skills, and the surrounding social environ-
ment. This line of thought shaped development practice for decades and emphasized
the mismatch between frontier technologies and local needs. At the same time, eco-
nomic theorists began to formalize the idea of induced innovation. Kennedy argued
that the bias of technological progress is endogenously shaped by relative factor prices
[24], while Drandakis and Phelps developed a formal model linking induced invention
to growth dynamics and income distribution [13].

These early contributions were crucial in shifting the perception of technology from
being an exogenous driver of growth to being a choice variable shaped by economic
incentives. However, they largely remained at the level of conceptual arguments or
partial-equilibrium analysis, and did not yet provide a consistent general equilibrium
framework in which technology adoption, growth, and distribution could be analyzed
together.

From the 1990s onward, appropriate technology became a central theme in modern
growth and development economics. Basu and Weil showed that countries far from the
world technology frontier tend to adopt techniques suited to their relative scarcities,
and that such mismatches can explain persistent cross-country differences in produc-
tivity and income levels [10]. Hall and Jones documented large international differences
in output per worker and argued that institutional and technological factors were key
determinants [21]. Caselli and Coleman constructed formal models of the world tech-
nology frontier, showing how the menu of techniques available to different countries
depends on their endowments and shapes their long-run growth paths [11].

Recently, Leon-Ledesma and Satchi incorporated appropriate technology into a
balanced growth setting, ensuring compatibility between endowment-driven adoption
and steady-state dynamics [27]. These studies offered a rich view of how adoption
interacts with development. Yet their main limitation lies in the treatment of the
technology set as largely exogenous: while they showed how endowments select among



technologies, they did not explain how the shape of the aggregate production function
emerges from the combination of micro-level menus.

A parallel stream of research advanced the theory of directed technical change. Ace-
moglu developed a series of seminal contributions showing that innovation is directed
toward relatively abundant or expensive factors, and that institutional or policy vari-
ables can alter the bias of technological progress [1-7|. This framework explained why
some economies experience capital-biased innovation while others experience labor-
saving progress, and it illuminated the links between innovation incentives, income
distribution, and growth. The directed technical change literature also expanded into
areas such as environmental policy, where the direction of innovation is critical for the
transition to clean technologies [6].

Empirical and theoretical studies, including Jones” analysis of the conditions under
which aggregate production functions approximate CES [22], and Growiec’s contribu-
tions on factor-augmenting progress and variable factor shares [14-20|, deepened our
understanding of how micro-level changes in technology map into aggregate regulari-
ties. This strand is highly influential, but its main limitation is its narrow focus on the
innovation margin. While it powerfully explains the incentives to innovate in particular
directions, it pays less attention to the adoption and selection of existing technologies,
which is often more relevant in contexts where innovation is slow or external but adop-
tion is pervasive.

In parallel, another body of work focused on factor-augmenting technical change
and the behavior of factor shares. A long-standing empirical regularity is the approxi-
mate stability of the labor share over long horizons, a fact historically consistent with
Cobb-Douglas production.

Yet more recent evidence indicates that labor shares are neither constant nor uni-
form across countries, industries, or time periods. Studies such as Growiec’s micro-
foundations for CES functions [17], his exploration of factor-specific technology choice
[18], and the joint work with Groth and McAdam on labor share cycles [19], empha-
sized the importance of explicitly modeling the choice of factor-augmenting techniques.
Meta-analyses, such as Knoblach and Stockl’s review of substitution elasticities [25],
provide empirical bounds for theoretical assumptions and highlight the heterogeneity
across settings. This strand has the advantage of being closer to empirical regularities
but often faces the limitation of requiring complex functional forms, which can obscure
the transparency of the mechanisms at work.

In more recent years, the scope of technology choice has expanded beyond simple
factor bias to include networks, supply chains, and other systemic interconnections.
Acemoglu and Azar highlighted that firms’ interconnections in production networks
fundamentally shape the propagation of technology shocks and aggregate fluctuations
[7]. Kopytov and coauthors extended this idea by incorporating supply chain uncer-
tainty into models of endogenous production networks [26]. These studies illustrate
that technology adoption is embedded not only in sectoral decisions but also in the
architecture of interfirm linkages. This network perspective greatly enriches our under-
standing of aggregate dynamics but also comes with limitations: the resulting models
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are often highly complex, and the link to benchmark functional forms used in applied
macroeconomics (such as Cobb-Douglas or CES) is less direct, making it harder to
draw transparent policy implications.

Taken together, the literature shows a rich progression: from early concerns about
appropriate technology and induced innovation, through models of frontier adoption
and directed technical change, to contemporary perspectives on factor-augmenting
choices, elasticities of substitution, and network propagation. Each stage added depth
to our understanding, yet each left gaps: early work lacked general equilibrium rigor,
later development models treated technology sets as exogenous, directed technical
change overemphasized innovation while underplaying adoption, and network models
offered complexity at the cost of tractability.

Against this background, the present paper focuses specifically on Cobb—Douglas
(CD) technologies. The reason is twofold. First, CD remains analytically tractable and
historically central: it provides a benchmark case where factor shares are constant, yet
the aggregation of multiple CD techniques can generate non-trivial dynamics of shares,
substitution, and structural change. Second, studying technology choice within the CD
class clarifies the extent to which empirical regularities attributed to “Cobb-Douglas
production” may in fact arise from an envelope of heterogeneous Leontief technologies
selected according to endowments.

In this sense, the CD framework is not only a convenient simplification but also
an economically meaningful laboratory for understanding how micro-level technology
menus translate into aggregate outcomes. By addressing the limitations of earlier
strands—whether their neglect of general equilibrium, their exclusive focus on inno-
vation, or their abstraction from tractable forms—this paper positions CD technology
choice as a natural and insightful focal point for advancing the theory of technology
selection in macroeconomics.

3 General setup

Consider an economy with one representative individual and n industries, each with one
representative firm. In any industry-i, the firm is allowed to take multiple technologies
freely from a set of available technologies:

F; = {F}“Ha e Q} ,
where §2; C [0, 1], and
FK, L) = Af(a) KL,

and A; is a positive function, K, L are inputs of capital and labor, respectively. Denote
the aggregate production function in sector ¢ as Fj.
The representative individual has initial endowments of capital Ky > 0 and labor



Lo >0, (let ko := Ko/Lg), and his utility function is

U(C,Cs, ..., Co) = [ CF
=1

where C; is the consumption good-i, and 6y, ...,6, € (0,1) are constants, satisfying
2 0i=1

For simplicity, in the sequel, in any case, we use 3 to replace 1 — «, v to replace
a/f, and with the same subscript and superscript as a.

Given the price system (r,w, p1, ..., P, ), Where r,w, p; are the prices of capital, labor
and the consumption good i, respectively. The firm-i’s problem (IP;) is'

2 2
a’L BZ
max i Ai(a)) Ly = K —w Lii ¢,
((lvj va,ij Jj=1,2 {p Z J ]z:; J jzz; j}
s.t. 7% € Qi; Kij > 0, Lij > O, Vi,j,
and the individual’s problem (PP) is

max : U(Cy,...,Cy)

s.t. szCz S T’KO + (,UL(),

i=1
Definition 1. A nonnegative vector (r,w,pl,aw, Cr K, L )221 nim1.2 is called
an equilibrium, if for any i, (oj;, K}, L};)j=12 solves (P;), and (CY, ..., C}) solves (IP),

and
ZA apy) (K5) ()™, i,

n

2 n 2
DD K =Ko YD L=
=1

j=1 i=1 j=1

For simplicity, due to the clearing condition for all the consumption goods markets,
to express an equilibrium, we can omit writing out the C}. And, if in any sector-i,

only one technology is chosen, then we denote (o, K;j, Lij)j=12 simply as (o, K;, L;).

Definition 2. We say that two equilibria (r,w, p;, C;, oij, Kij, Lij),_,
(T,w,pl,C’ o K ng)

ig) T rigo

,n,j=1,2 and

im1 o j1p 21O equivalent, if for any 4,

SR SLAD DS 3
J J J

!By Theorem 1 in Appendix B, any firm takes at most two technologies simultaneously.




The equivalence means that the total output in each sector is the same, although the
concrete technologies and the factor allocation within one sector are different.
For this economy, the social planner’s problem is

max U(Cy,...,Cp),

1] )

p
Y Kij=FK, > L= Lo,
] 2%

Q5 € Q;, Vi, j.

2
s.t. Cl = ZAZ(OQJ)KEULBU \V/’L,
=1

It’s easy to see that for this economy, the first and second theorems of welfare economics
hold. And hence, the equilibrium problem is equivalent to the social planner’s problem
(except for the price system), which is equivalent to identifying the realization of the
aggregate production functions (Fi, ..., F},).

Define B;(a) := A;j(a)a®B°,  a;(a) == InAi(a), bi(a) := InB;(a), and for any
x>0,
Ai(z) := arg m%x{bi(oz) —alnzx}.
agll;
One can easily prove the following basic result on the equilibrium.

Lemma. (r,w,p;, aij, Kij, Lij),_, nj—1o 1S an equilibrium, if and only if

VigLij

T g ..
K, =0 o = Bilay™, Vij
aij € Ni(z), Vi, j;

vy Kiy+ Y Lij=0;(xKo+ L), Vi;

J J
Ko=) Ky, Ly=)Y Ly,
i i

where = = r/w.
From this lemma, we can obtain following corollaries immediately.
Corollary 1. The equilibrium exists and is unique and is with one technology, if

and only if A;(z) = {a;}, Vi, where

Db

X

Corollary 2. If for any 4, €; is some interval in [0, 1], and b; is smooth and
strictly concave. Then, the equilibrium exists and is unique and with one technology,
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and these technologies are all interior, if and only if the equations for (z,aq, ..., ay),
x>0, € Qe=1,...n:

{ zko =), 0,05/ . 0.5,

ai(a;) +Iny, =Inz, Vi=1,..,n

has a unique solution and the solution is interior in the sense that for any i = 1, ..., n,
«; is an interior point of €.

Corollary 3. If for any ¢, €; is an closed interval in [0, 1], and b; is convex.
Then, the unique (in the sense of equivalence) equilibrium (in case of existence) is the
equilibrium taking with extreme technologies (maybe multiple), that is, for any 4, the
optimal a;’s are taken from the end points of €2;.

We see that the concavity/convexity of b; matters.

We need to emphasize that in the above setting, the A;(«)’s are given exogenously.
Which kind of A;(a)’s are suitable? We will discuss several typical types of it.

4 One-sector

Consider an economy stated in section 3 with n = 1. We use the same notations,
except for that we drop the subscript 7. Let the price of consumption good be 1.

4.1 The case with countable (2

Suppose Q = {a,|n € N}, where {«, },ez is a sequence of strictly increasing numbers
on (0,1). Here and throughout this paper, N denotes the set of all natural numbers.
Define mg := oo, and for any n € N,
b(ant1) — b(an)

my ‘= )
an+1 — Oy

M, =y, My, =™, M*:=supM,,.
neN

Proposition 1. (i) If b is strictly concave, then, for kg € (0, M*), the equilibrium
exists and is unique, more precisely, for ky € (M, _, M, ), the optimal technology
is taking ay,; for any ko € M4, M(n41)-], the optimal technology is taking oy, o1
simultaneously; for kg > M™*, the equilibrium does not exist.

(ii) If for any Ky > 0, Lo > 0, the equilibrium exists and is unique, and there exists
a sequence of real numbers 0 = M|_ < M{, < .. < M)_ < M, < .. satisfying
lim,, o M, = oo such that for ky € (M, _, M} ), the optimal technology is taking a;
for any ko € [M]_, M(/n+1)7]7 the optimal technology is taking a,, o, 1 simultaneously,
then, b is strictly concave and M, _ = M,_, M = M, for any n € N, and M* = oo.



Remark 1. When b is strictly concave, M, and M )— are the two tangent
points of the joint tangent line of the two curves y = A(«a,)k* and y = A(ay,4q)ko+!
on the k-y plain.

Remark 2. If M* = oo, then, for any Ky > 0, Ly > 0, the equilibrium exists and
is unique. Along with the increase of ky from 0 to oo, the optimal o will go throughout
a1, Ao, ... from left to right sequentially.

4.2 The case with Q = [0, 1]

Since the concavity of b matters, from Corollaries 2 and 3, we can get further corollaries
in this case.

In particular, if b is smooth and strictly concave, then for any K > 0,L > 0,
F(K,L) = F®(K, L), where a is determined by a/(a) = In(L/K).

If b is convex, then, F(K,L) = A(1)K + A(0)L, V(K,L)e R2.

For more complicated case, one can verify that if a is strictly concave but b is
strictly concave in [0, ] and strictly convex in [ag, 1], where ag € (0,1)?, then, the
equilibrium exists and is unique, and there are k, > 0 and «a, € (0,aq) such that
the optimal technology is taking « € (0, a.) and 1 simultaneously, the corresponding
allocation of capital is Ky A (kiLg) and (Ko — (k.Lo))™, to the technologies a, and 1,
respectively, where a is determined by a'(«) = — In(Ky A (k. Lo).

We now focus on the case, where b is linear, more precisely, A(a) = m®(a®3%)~!
for some constant m > 0. Then,

F(K, L) = A(an) K{' L + A(as) K52 L3?,
for any «y, K;, L;, 1 = 1, 2 satisfying
K1+K2:K, L1+L2:L, ml{?Z:’}/Z,Z:172

In other words, the equilibrium exists and is unique in the sense of equivalence class.
Among the equivalence class, two variants are special. One is the mixture of the
two extreme technologies, that is, « = 1 and a = 0, which implies

F(K,L)=mK + L.
The other variant is one interior technology

*

B mK
C mK+ L’

which yields
F(K,L) = A(a*)K* L,

20One example is a(a) = o, where € € (0,1).



In addition, for this case, the TFP A(«) is inverted U-shaped in the interval [0, 1]
and obtains its maximum at the point

. m
a=——m,
14+m

which is approaching to 1 as m — oo. So, if m is sufficiently large, then, we see that
in most part of the interval [0, 1], the TFP A(«) is strictly increasing.
To sum up, we get

Proposition 2. If b is linear, the optimal capital share strictly increases from 0 to
1, as the initial capital per capita kg increases from 0 to oco.

5 Multi-sector

We discuss two cases separately.

5.1 Interior technology

Suppose that for any i, £; = [0, 1], and A;(a) = (aaﬁﬁ)_& , where 0; > 1,i=1,...,n,
are constants.
For any i,
bi(a) =—(0; — 1) (alna+ f1nP)

is strictly concave, and hence, the equilibrium is with interior technologies.
More precisely, the equilibrium exits and is unique, in which for any 7, the optimal

technology for industry-: is
1

1 T+ /@1

where x = r/w, the rental-wage ratio, is determined uniquely by

ot Z; 1+ /06 — 2 1+ 2/GD)"

=1

a;

We see that x is strictly decreasing with respect to kg; and hence, for any i, «; is
strictly increasing with respect to k.

Proposition 3. Along with the increase in kg, each industry experiences technology
upgrading, and the rental-wage ratio decreases continuously.

5.2 Extreme technology

Suppose that for any i, Q; = [o,, @], and A;(a) = m?, where 0 < o; < @ < 1 and

77 f—

m; > 0 are given constants, here m; is the labor augmenting factor.

10



For any i,
bi(a) = flnm; + alna+ Fln g,

is strictly convex, and hence, the equilibrium must be with extreme technologies. That
is, for any industry-¢, the optimal technology is either low technology «,; or high
technology @;; or mixed technology, that is, taking low and high technologies simulta-
neously.

For any ¢ € {1,...,n}, define

om o { M2 ),

ap —

. ZxﬂﬁV+ZQﬂMJT H*_Ezg%@+52»%%7
2t—1 - ts 2t T - ty
zj<t ejﬁj ++ ijt ejéj ngt ejﬁj + zj>t ejﬁj

* . * PR
and kg := 0, K3, := oo.
* * * * *
Assume 7y < 75 < ... < 7,. Then, kg < k] < Ky < . < Ky, < KRS,

Proposition 4. The equilibrium exits and is unique.

(i) If ko € [r3;, K3,,,) for some ¢, then,

a; =a;, Vi<t Q; =y, Vi>t;
(ii) If ko € (K3,_1, K3,) for some t, then,
a; =, Vi<t a1 = Qy, Qg = Qi Q= q,;, Vi>t.

Remark 3. In general, with the increase in kg, any industry experiences technology
upgrading through three phases, and the upgrading happens one by one sequentially.
The total phases of economic development is at least 2n — 1 (for the case, where
0=q;, <a; =1 for all 7) and at most 2n + 1 (for the case, where 0 < o; < @; < 1 for
all 7).

In addition, Appendix C presents the analytical solution of the equilibrium, from
which we can observe that the capital intensity of each sector increases with the rise
in k?g.

Therefore, to summarize, we obtain the following result:

Proposition 5. (Technology Upgrading) As the per capita capital stock of the
economy increases, each industry undergoes three phases of technological upgrading
and becomes progressively more capital-intensive: low technology, mixed technology,
and high technology. The upgrading process occurs sequentially—an industry begins
upgrading only after the preceding one has completed its transformation. Consequently,
the economy as a whole experiences a finite number of technological upgrading phases.

Remark 4. Analogously, one can show that if each firm is restricted to adopting
a single technology, then an equilibrium fails to exist whenever x5, ; < ky < k3, for
some ¢.
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6 The dynamic model

All the static models considered above can be extended to a dynamic one in this way: let
all the industries in the static model be industries of intermediate goods, and introduce
a new industry producing the final good (the unique consumption good, homogeneous
with capital and hence can be accumulated as capital) by using all the intermediate
goods as inputs through a production function as the individual’s utility function in
the static model, and set the individual’s life-long utility as

/ e Pu(C)dt,
0

where C'is his consumption of the final goods, p > 0 is his discount rate, and u is his
instant utility function satisfying the usual conditions. In this way, we get a dynamic
model, in which the capital is really strictly increasing in the whole process of economic
development, and hence, the technology upgrading analyzed above can be applied in
this dynamic setting. We omit the detail.

7 Conclusion

This paper develops a general equilibrium framework in which aggregate production
arises from firms’ choice among heterogeneous Cobb—Douglas technologies. We charac-
terize when equilibria select a single technology, mix two technologies, or fail to exist,
and we show that the curvature of the technology frontier governs these outcomes. In
multi-sector settings, rising capital-labor ratios generate sequential industry upgrading
along sharp phase boundaries. The framework provides a tractable foundation for link-
ing micro-level technology menus to macroeconomic dynamics, offering new theoretical
insights into structural transformation and long-run growth.

Beyond its theoretical contributions, the analysis also highlights mechanisms with
direct policy relevance: as endowments evolve, economies traverse predictable paths
of industrial upgrading, and policies that expand the feasible technology set or re-
duce adoption costs can accelerate this process. These insights help clarify the role of
technology and industrial policy in shaping long-run development trajectories.
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Appendix A. Transformation function

Technology can be expressed by a transformation function.

The idea "adapted technology" means that for any economy, technology choice
should be adapted to its factor endowment and the people’s preference but not its
factor endowment only.

We now construct an example to show that the optimal technology choice may not
depend on the economy’s factor endowment.

Example. Consider an economy with one representative individual and one rep-
resentative firm. Assume that the individual owns physical capital Ky > 0 and labor
Lo > 0, and the firm produces two consumption goods using capital and labor by
technologies chosen freely from the set of all available technologies:

az? + Brs < KL,

where K, L are the inputs of capital and labor, respectively, and x1, x5 are the outputs of
good 1 and good 2, respectively; and a can be chosen in [ay, as|, where 0 < oy < g < 1
are constants, and =1 — a.

14



The individual’s utility function is
U(Cy,Cy) = C Oy,

where C', Cy are his consumptions of the good 1 and good 2, respectively, and 61,05 €
(0,1) are constants, satisfying 01 + 6, = 1.

It is easy to verify that the equilibrium exists and is unique: the optimal technology
choice is: taking technology «; only , if oy < 1; taking technology «s only, if o9 < 1;
taking technologies aq, oy simultaneously, if o; > 1 for any ¢ = 1, 2, where

o b _ Q2 52
Ul_a201+502’ O = 91+ﬁ1

Appendix B. Global and Aggregate Production Func-
tions

In general, suppose that in a sector in an economy, the technology can be chosen freely
from a set of available technologies:

F ={FYNa e},

where € is a set in some Euclidian space, and for any a € , F(® is a function of
factor X € R, nonnegative, continuous, homogeneous, concave and increasing.
For any N € N, let

N
Fn(X) = sup > Fe(X;),
(@, Xj)j=1,..8 =1
N
s.t X = X,
j=1

and
G(X)=F(X); F(X)=supFy(X), VXeR}.
N

We call F® a local production function for any o € Q, G global production function,
and F' aggregate production function.

The following basic result is a direct consequence of the classical Caratheodory
theorem in convex analysis (See Corollary 17.1.3 in [29]).

Theorem 1. F' = F,,.

This theorem means that when the factor is of n-dimension, then, the aggregate
production function can be realized by at most n local production functions at any
concrete factor.
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For a firm, facing the set of available technologies .%, the technology choice for it
is to find F' and its realization. The firm always takes [, if it can be realized.

For the global production function, we have the following result. Consider % =
{F®|a € O}, where

0= {(al, . an) €RY

=1

Hafizl},
10; = 1; and for any o =

where 0y,...,0, are all positive constants satisfying >
(ay,...,a,) €,

FOX) = ®(a1 X3, ...0,X,,), YX = (Xy,..., X,) € R",

where @, defined on R}, is smooth and satisfies that ®(x) = 0 for all z, which is not
the interior point of R, and increasing in the sense that ® is increasing with respect
to every element.

Then, the global production function is
= () n
G(X) rgéaé(F (X), VX eR].

Define a function ¢ on [0, c0):

We have a basic result. The proof is easy, hence, omitted.
Theorem 2.
(i) G(X) exists for any X € R%, if and only if ¢(2) exists for any z € [0, 00).
(ii) In case of existence, ¢ is increasing, and

G(X1, ... X,) = ¢ (H Xfi) . V(X ., X,) ERT
=1

Therefore, G is homothetic.
(iii) In case of existence, G is smooth, if and only if ¢ is smooth. And, for any
X >0,

XiGr - X,G,
5 T T
where G; = g—)i, forany 1 =1,...,n.

(iv) If ® is homogeneous, then, in case of existence, ¢ is homogeneous, and hence,
G is itself Cobb-Douglas, and for any 7 = 1, ..., n, the share of the capital-: is 6;.

Remark 5. If ® is of CES type: for any (21, ...,2,) € R},
(21, ..., 1) = (0107 + ... + O,22) "
where p < 1,0; > 0,7 = 1, ...,n are all constants, then, ¢(z) exists for any z > 0, if and

only if p < 0 (including the case p = —o0).

16



Appendix C. Proofs

Proof of Proposition 1. We prove (i). First of all, we notice that an equilibrium
with one technology exists, if and only if there exists n € N such that A(~,/ko) = {a.},
which is equivalent to

Ep > In 22 > 0, (1)
ko

where for any n € N,

e, = min ) Zblen) s D) — blom)
j<n Qj — Oy j>n Q5 — O

in particular, £; = oo.

Since b is strictly concave, then, (1) is equivalent to

Mpy—1 > lnﬁ > My, (2)
ko

where my = oo, and for any n € N,

b(an—f—l) - b(an) _

Qnt1 — Qp

m, =

And, further, (2) is equivalent to
M, <ky< M,,,

where

—Mn—1

M, = Tn€ ) Mn+ = ’Yne_m"~
We know

O0=M_ <My <My <My <..<M, <My <Myuiy- <Muine <.

Denote
M* =sup M,,,..
neN
Obviously, M* = oo if and only if a,, — 1 or m,, - —o0 as n — oo.
Now, suppose that there is n € N such that

My < ko < Mgy1)—- (3)

According the above analysis, there does not exist an equilibrium with one technology.
We turn to the equilibrium with multiple technologies.

Due to the strict concavity of b, it’s easy to see that for any x > 0, A(z) can not
include more than two elements, and if it contains two elements, say, a;, o, @ < j,
then, it must be the case, where j =i + 1.
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So, under (3), if there is an equilibrium with two technologies, then, there is = > 0
and i € N such that A(z) = {a;, a;11}, and hence, b(;) — a;Inz = b(a;41) — i1 Inz,
then, Inxz = m;. And, © = ~v;/ki = viy1/kiv1; Lo = Li + Ly, Ko = K; + Kiq.
Therefore,

i1 — ok Fo — %
Li:ML()’ Li+1:u[zo,
Yi+1 — Vi Yit1 — Vi
5 ko) — 1 1 —~;/(xk
K, = Y/ (ko) =1 Koy = 120 /(zko) o
Yir1/%i — 1 1 —%/%it

Since all these four variables are nonnegative, then,
My < ko < Miyr)—.

And hence, i = n.

Conversely, under (3), take x = m,, and then, it’s easy to verify that A(z) =
{an, @i}, and the equilibrium follows.

Thus, we can conclude that under (3), the equilibrium exists and is unique, which
is the equilibrium with technologies n and n + 1 simultaneously.

For any ko > M¥*, there does not exist equilibrium. In fact, otherwise, there would
exist ¢ € N such that ko < M(;;1)— < M*. A contradiction. Therefore, the equilibrium
does not exist.

To sum up, if ky € (0, M*), then the equilibrium exists and is unique. Along with
the increase of Ky from 0 to M*, the optimal a will go throughout aq, as, ... from left
to right sequentially. If kg > M™*, then the equilibrium does not exist.

By the way, as to global production function, we have

Fl(K L), if K/Lé& (M, ,M,;),
F(K,L) =< wuK +wul, if K/L € My, Myi1-],
not exist, it K/L> M*,

where w,; = B(a;)e™i, w,y = Blag)e ™% for any i =n,n + 1.
This completes the proof of (i). And (ii) can be proved by the same method, a bit
modified.

Proof of Proposition 4. We only prove the result under the assumption that
O<qg,<a; <1, Vi=1..,n.

Other cases can be proved similarly.

Let (r,w,pi, Cij, aij, K, Lij)i:l,...,n,j:1,2 be the equilibrium. We now consider the
following two cases.

The first case. There exists some t € {0,1,...,n} such that for any i < ¢, industry-i
takes low technology; for any ¢ > ¢, industry-¢ takes high technology, and no industry
takes mixed technology.
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By solving the individual’s optimization problem, one can easily get that for any
ie{l,..,n},

piCZ- = Qi(rKo + u}Lo). (4)

By solving the firms’ optimization problems, one can get that for any i € {1,...,n},

r _8, w )
— = 050, ﬁla — = miﬁig;llu (5)
bi i
where g; = K;/(m;L;), and
{ @, i<t
o; = .
a;, 1>t
By the market clearing condition, we have
Y Ki=FK, Y Li=1 (6)
i=1 i=1

From (4),(5), we get that for any 4,5 € {1,...,n},
0, pC;  of'K;  B7'L

0, pC; a;'K; N BiL;

which, combining with (6), gives that for any ¢ € {1,...,n},

~n A Ko, Lz = <=n A LO- (7)
> im0

Ki - )
> i1 0i8;

From (5)(7), we get that

w _ st 0;8; + X551 038; N )

— 0-
r ngt 0;a; + Zj>t 00

And by solving the problems of the firms, we obtain

ane (B, )P a\™ ([ B K g
(?) <w/Ai> = <?) (w/mi) » VISH
QN éz & Q; & Bl B )

G () = (7) () v

T <

Therefore,

which, combining with (8), yields that

* *
Koy < ko < Kott1-
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The second case. There exists some ¢t € {0,1,...,n} such that for any i < ¢,
industry-¢ takes low technology; for any ¢ > t, industry-¢ takes high technology, and
industry-t takes mixed technology.

By solving the individual’s optimization problem, (4) still holds. By solving the
firms’ optimization problem, we obtain that for any 7 # ¢,

r g w o
— = 44, o — =m;fBig;", 9)
Di Di
where g; = K;/(m;L;), and
{ a;, 1 <t,
o, = .
&y > t?
and r _3 - " —
— =g =g — =B = miBg, (10)
bt g

where g;; = Ky;/(mLy;). And hence,

w B, B e
— = _k — :tk' o fry —t
. a 2 a, t1, B9 @tgﬂv

which yields
w
— = Tt.
,

By (4) and (9), we have that for any i # ¢,
K; = 0;0i(Ko + 1.Lo), L; = 0;8,(Ko/7: + Lo),
and by (4) and (10), we obtain

K K L L
Q_il_'_a_tf :et(KO‘i‘TtLO)a B_tt1+ﬁ_tj :et(KO/Tt+LO)'

By the market clearing condition, we have

K+ Kp=Ko— > 0;0:(Ko + 7 Lo); Li+ Lo =1-Y_0:8;(Ko/7 + Lo).
it it

Therefore,

ngt ngj + Zj>t Qjéj <’f§t ) K.
l{jo 05

t1 — at/gt_]-

Zj<t HJ'BJ' + ijt ejéj K1
Kt? g — 1 - KO?
1-— Qt/at kO
L > < 050 + 2o i (1 3 ko ) Lo,
1 - /Bt/ét Kj?t
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L =

Zj<t b;a; + ijt 00 ( Ko B 1) Lo
ﬁt/ﬁt —1 Kat—1

And, obviously, in this case,

o1 < ko < K.

By the same method, one can prove that any other cases are impossible. The proof
is completed.
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