• 学院首页
  • 学院概况
    • 院长寄语
    • 学院简介
    • 历史沿革
    • 学院架构
    • 联系我们
  • 师资队伍
    • 专职教师
    • 博士后
    • 荣誉教授
    • 讲席教授
    • 特聘教授
    • 荣退教工
  • 教学培养
    • 项目介绍
    • 通知公告
    • 教学动态
    • 常用下载
    • 联系我们
  • 招生工作
    • 信息公告
    • 本科项目
    • 硕士项目
    • 博士项目
    • EDBA项目
    • 双学位项目
    • 优秀大学生夏令营
    • 联系我们
  • 科学研究
    • 基础研究
    • 智库建设
    • 科研项目
    • 成果奖励
    • 学术论坛
    • 财经时评
    • 工作论文
    • 研究机构
    • 异地机构
    • 学术刊物
    • 金融工程实验室
  • 国际交流
    • 合作交流
    • 学位项目
    • 交换项目
    • 假期学校
    • 名家讲座
    • 会议论坛
    • 成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    • 校友动态
    • 校友风采
    • 我与经院
    • 校友会
    • 校友卡办理
    • 捐赠与发展
    • 校友平台
    • 校友服务中心
北大主页| 诚聘英才| 招生| English
北大主页| 诚聘英才| 招生| English|
  • 学院概况
    院长寄语
    学院简介
    历史沿革
    学院架构
    联系我们
  • 师资队伍
    专职教师
    博士后
    荣誉教授
    讲席教授
    特聘教授
    荣退教工
  • 教学培养
    项目介绍
    通知公告
    教学动态
    常用下载
    联系我们
  • 招生工作
    信息公告
    本科项目
    硕士项目
    博士项目
    EDBA项目
    双学位项目
    优秀大学生夏令营
    联系我们
  • 科学研究
    基础研究
    智库建设
    科研项目
    成果奖励
    学术论坛
    财经时评
    工作论文
    研究机构
    异地机构
    学术刊物
    金融工程实验室
  • 国际交流
    合作交流
    学位项目
    交换项目
    假期学校
    名家讲座
    会议论坛
    成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    校友动态
    校友风采
    我与经院
    校友会
    校友卡办理
    捐赠与发展
    校友平台
    校友服务中心

金融学系

  • 专业介绍
  • 学科动态
    学科动态展示
学科动态展示
  • 专业介绍
  • 学科动态
    学科动态展示
您现在的位置: 首页» 学科专业» 金融学系» 学科动态» 学科动态展示

【预告】北大经院计量、金融和大数据分析工作坊第59场

发布时间:2022-03-09

  Nonparametric Estimation of Continuous Treatment Effect with Measurement Error

  (测量误差下连续处理效应的非参数估计)

  

  主讲人:张政(中国人民大学统计与大数据研究院助理教授)

  主持老师:(北大国发院)孙振庭

  参与老师:(北大经院)王一鸣、王熙、刘蕴霆

                   (北大国发院)沈艳、黄卓、张俊妮

                   (北大新结构)胡博

  时间:2022年3月11日(周五) 10:00-11:30

  地点(线下):北京大学国家发展研究院承泽园245会议室

  主讲人简介:

  张政,中国人民大学统计与大数据研究院担任助理教授,2015年于香港中文大学统计系获博士学位。研究方向包括因果推断、缺失数据、污染数据、半参数模型的有效估计、非参数统计推断、随机微分方程、随机分析等。在JRSS-B, JOE, Quantitative Economics, JBES, Statistica Sinica, Stochastic Processes and their Applications等统计、计量经济、概率论国际期刊上发表论文十余篇。主持国家自然科学基金青年基金,北京市自然科学基金面上项目。

  摘要:

  We consider estimating the average dose-response function (ADRF) nonparametrically for continuous-valued treatment. The existing literature of continuous treatment effect proposed consistent estimators only for error-free data. However, in observational studies concerned by the literature of treatment effect, the treatment data can be measured with error. There, existing techniques are not applicable and finding a proper modification is not straightforward. We identify the ADRF by a weighted conditional expectation and estimate the weights nonparametrically by maximising a local generalised empirical likelihood subject to an expanding set of conditional moment equations incorporated with the deconvolution kernels. We then construct a deconvolution kernel estimator of the weighted conditional expectation. We derive the $L_2$ and $L_\infty$ convergence rates of our weights estimator and the asymptotic bias and variance of our ADRF estimator. We also provide the asymptotic linear expansion of our ADRF estimator in both the ordinary smooth and the supersmooth error cases, which can help conduct statistical inference. We provide a data-driven method to select our smoothing parameters based on the simulation-extrapolation (SIMEX) idea and propose a new extrapolation procedure to stabilise the computation. Monte-Carlo simulations show a satisfactory finite-sample performance of our method, and a real data study illustrates its practical value.

分享到:

电话(传真):010-62751460/010-62754237 Email:economics@pku.edu.cn

部门链接

  • 北大招办
  • 教务部
  • 研究生院
  • 国际合作部
  • 经济学院官微

  • 北大经院人

  • 经院校友会

北京大学经济学院版权所有