• 学院首页
  • 学院概况
    • 院长寄语
    • 学院简介
    • 历史沿革
    • 学院架构
    • 联系我们
  • 师资队伍
    • 专职教师
    • 博士后
    • 荣誉教授
    • 讲席教授
    • 特聘教授
    • 荣退教工
  • 教学培养
    • 项目介绍
    • 通知公告
    • 教学动态
    • 常用下载
    • 联系我们
  • 招生工作
    • 信息公告
    • 本科项目
    • 硕士项目
    • 博士项目
    • EDBA项目
    • 双学位项目
    • 优秀大学生夏令营
    • 联系我们
  • 科学研究
    • 基础研究
    • 智库建设
    • 科研项目
    • 成果奖励
    • 学术论坛
    • 财经时评
    • 工作论文
    • 研究机构
    • 异地机构
    • 学术刊物
    • 金融工程实验室
  • 国际交流
    • 合作交流
    • 学位项目
    • 交换项目
    • 假期学校
    • 名家讲座
    • 会议论坛
    • 成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    • 校友动态
    • 校友风采
    • 我与经院
    • 校友会
    • 校友卡办理
    • 捐赠与发展
    • 校友平台
    • 校友服务中心
北大主页| 诚聘英才| 招生| English
北大主页| 诚聘英才| 招生| English|
  • 学院概况
    院长寄语
    学院简介
    历史沿革
    学院架构
    联系我们
  • 师资队伍
    专职教师
    博士后
    荣誉教授
    讲席教授
    特聘教授
    荣退教工
  • 教学培养
    项目介绍
    通知公告
    教学动态
    常用下载
    联系我们
  • 招生工作
    信息公告
    本科项目
    硕士项目
    博士项目
    EDBA项目
    双学位项目
    优秀大学生夏令营
    联系我们
  • 科学研究
    基础研究
    智库建设
    科研项目
    成果奖励
    学术论坛
    财经时评
    工作论文
    研究机构
    异地机构
    学术刊物
    金融工程实验室
  • 国际交流
    合作交流
    学位项目
    交换项目
    假期学校
    名家讲座
    会议论坛
    成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    校友动态
    校友风采
    我与经院
    校友会
    校友卡办理
    捐赠与发展
    校友平台
    校友服务中心

金融学系

  • 专业介绍
  • 学科动态
    学科动态展示
学科动态展示
  • 专业介绍
  • 学科动态
    学科动态展示
您现在的位置: 首页» 学科专业» 金融学系» 学科动态» 学科动态展示

【预告】北大经院计量、金融和大数据分析工作坊第92场

发布时间:2023-11-06

Inference on Strongly Identified Functionals of Weakly Identified Functions

(有关弱识别函数的强识别泛函的统计推断)

 

主讲人:Xiaojie Mao(Tsinghua University)

主持老师:(北大经院)王熙

参与老师:(北大经院)王一鸣、刘蕴霆、王法

(北大国发院)黄卓、张俊妮、孙振庭

(北大新结构)胡博

时间:2023年11月10日(周五) 10:00-11:30

地点(线下): 北京大学经济学院107会议室

报告摘要:

In a variety of applications, including nonparametric instrumental variable (NPIV) analysis, proximal causal inference under unmeasured confounding, and missing-not-at-random data with shadow variables, we are interested in inference on a continuous linear functional (e.g., average causal effects) of nuisance function (e.g., NPIV regression) defined by conditional moment restrictions. These nuisance functions are generally weakly identified, in that the conditional moment restrictions can be severely ill-posed as well as admit multiple solutions. This is sometimes resolved by imposing strong conditions that imply the function can be estimated at rates that make inference on the functional possible. In this paper, we study a novel condition for the functional to be strongly identified even when the nuisance function is not; that is, the functional is amenable to asymptotically-normal estimation at root n rates. The condition implies the existence of debiasing nuisance functions, and we propose penalized minimax estimators for both the primary and debiasing nuisance functions. The proposed nuisance estimators can accommodate flexible function classes, and importantly they can converge to fixed limits determined by the penalization regardless of the identifiability of the nuisances. We use the penalized nuisance estimators to form a debiased estimator for the functional of interest and prove its asymptotic normality under generic high-level conditions, which provide for asymptotically valid confidence intervals. We also illustrate our method in a novel partially linear proximal causal inference problem and a partially linear instrumental variable regression problem.

 

主讲人简介:

Xiaojie Mao is an assistant professor in Management Science and Engineering at Tsinghua University. He obtained his PhD degree in Statistics from the Department of Statistics and Data Science, Cornell University. He has numerous publications in Management Science, Operations Research, and so on.

 

 

分享到:

电话(传真):010-62751460/010-62754237 Email:economics@pku.edu.cn

部门链接

  • 北大招办
  • 教务部
  • 研究生院
  • 国际合作部
  • 经济学院官微

  • 北大经院人

  • 经院校友会

北京大学经济学院版权所有