• 学院首页
  • 学院概况
    • 院长寄语
    • 学院简介
    • 历史沿革
    • 学院架构
    • 联系我们
  • 师资队伍
    • 专职教师
    • 博士后
    • 荣誉教授
    • 讲席教授
    • 特聘教授
    • 荣退教工
  • 教学培养
    • 项目介绍
    • 通知公告
    • 教学动态
    • 常用下载
    • 联系我们
  • 招生工作
    • 信息公告
    • 本科项目
    • 硕士项目
    • 博士项目
    • EDBA项目
    • 双学位项目
    • 优秀大学生夏令营
    • 联系我们
  • 科学研究
    • 基础研究
    • 智库建设
    • 科研项目
    • 成果奖励
    • 学术论坛
    • 财经时评
    • 工作论文
    • 研究机构
    • 异地机构
    • 学术刊物
    • 金融工程实验室
  • 国际交流
    • 合作交流
    • 学位项目
    • 交换项目
    • 假期学校
    • 名家讲座
    • 会议论坛
    • 成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    • 校友动态
    • 校友风采
    • 我与经院
    • 校友会
    • 校友卡办理
    • 捐赠与发展
    • 校友平台
    • 校友服务中心
北大主页| 诚聘英才| 招生| English
北大主页| 诚聘英才| 招生| English|
  • 学院概况
    院长寄语
    学院简介
    历史沿革
    学院架构
    联系我们
  • 师资队伍
    专职教师
    博士后
    荣誉教授
    讲席教授
    特聘教授
    荣退教工
  • 教学培养
    项目介绍
    通知公告
    教学动态
    常用下载
    联系我们
  • 招生工作
    信息公告
    本科项目
    硕士项目
    博士项目
    EDBA项目
    双学位项目
    优秀大学生夏令营
    联系我们
  • 科学研究
    基础研究
    智库建设
    科研项目
    成果奖励
    学术论坛
    财经时评
    工作论文
    研究机构
    异地机构
    学术刊物
    金融工程实验室
  • 国际交流
    合作交流
    学位项目
    交换项目
    假期学校
    名家讲座
    会议论坛
    成果感受
  • 学生培养
  • 高端教育
  • 校友中心
    校友动态
    校友风采
    我与经院
    校友会
    校友卡办理
    捐赠与发展
    校友平台
    校友服务中心

金融学系

  • 专业介绍
  • 学科动态
    学科动态展示
学科动态展示
  • 专业介绍
  • 学科动态
    学科动态展示
您现在的位置: 首页» 学科专业» 金融学系» 学科动态» 学科动态展示

【预告】北大经院计量、金融和大数据分析工作坊第119场

发布时间:2025-02-21

 Ridge Regression Under Dense Factor Augmented Models

(密集因子增强模型下的岭回归)

 

主讲人: Yi He(University of Amsterdam, Netherlands)

主持老师:(北大经院)王法

参与老师:(北大经院)王一鸣、王熙、刘蕴霆

时间:2025年2月28日(周五) 10:00-11:30

地点(线下):北京大学经济学院107会议室

报告摘要:

This article establishes a comprehensive theory of the optimality, robustness, and cross-validation selection consistency for the ridge regression under factor-augmented models with possibly dense idiosyncratic information. Using spectral analysis for random matrices, we show that the ridge regression is asymptotically efficient in capturing both factor and idiosyncratic information by minimizing the limiting predictive loss among the entire class of spectral regularized estimators under large-dimensional factor models and mixed-effects hypothesis. We derive an asymptotically optimal ridge penalty in closed form and prove that a bias-corrected k-fold cross-validation procedure can adaptively select the best ridge penalty in large samples. We extend the theory to the autoregressive models with many exogenous variables and establish a consistent cross-validation procedure using the what-we-called double ridge regression method. Our results allow for nonparametric distributions for, possibly heavy-tailed, martingale difference errors and idiosyncratic random coefficients and adapt to the cross-sectional and temporal dependence structures of the large-dimensional predictors. We demonstrate the performance of our ridge estimators in simulated examples as well as an economic dataset. All the proofs are available in the supplementary materials, which also includes more technical discussions and remarks, extra simulation results, and useful lemmas that may be of independent interest.

主讲人简介:

Yi He is an Associate Professor in the Quantitative Economics Section at the University of Amsterdam. He earned his master's degree from the University of Cambridge and his PhD from Tilburg University in 2016. Before returning to the Netherlands, he served as a tenured Assistant Professor in the Department of Econometrics and Business Statistics at Monash University in Australia. His research focuses on high-dimensional econometrics, random matrix theory, extreme value statistics, bootstrapping, and machine learning. His work has been featured in prestigious journals, including the Journal of the American Statistical Association, The Annals of Statistics, Journal of the Royal Statistical Society - Series B, Journal of Business & Economic Statistics, and Journal of Econometrics. Yi's breakthroughs in extreme value statistics have earned him a nomination for the 2025 Van Dantzig Award in Statistics and Operations Research in the Netherlands. His current research explores dense time series models with complex network interactions in high-dimensional econometrics.

 

分享到:

电话(传真):010-62751460/010-62754237 Email:economics@pku.edu.cn

部门链接

  • 北大招办
  • 教务部
  • 研究生院
  • 国际合作部
  • 经济学院官微

  • 北大经院人

  • 经院校友会

北京大学经济学院版权所有